Code for workshop paper "Inferring mood disorder symptoms from multivariate time-series sensory data" at the NeurIPS 2022 Workshop on Learning from Time Series for Health.
@article{
li2022inferring,
title={Inferring mood disorder symptoms from multivariate time-series sensory data},
author={Bryan M. Li and Filippo Corponi and Gerard Anmella and Ariadna Mas and Miriam Sanabra and Diego Hidalgo-Mazzei and Antonio Vergari},
journal={NeurIPS 2022 Workshop on Learning from Time Series for Health},
year={2022},
url={https://openreview.net/forum?id=awjU8fCDZjS}
}
- Create a new conda environment with Python 3.8.
conda create -n timebase python=3.8
- Activate
timebase
virtual environmentconda activate timebase
- Install all dependencies and packages with
setup.sh
script, works on both Linus and macOS.sh setup.sh
- See dataset/README.md regarding data availability and the structure of the dataset.
- To train a BiLSTM regression model with GRU embeddings
python regression_train.py --output_dir runs/001_test_run --regression_mode 1 --qc_mode 1 --time_alignment 0 --embedding_type 0 --model bilstm --epochs 200 --verbose 1
- Use
python regression_train.py --help
to see all options. - TensorBoard visualization
tensorboard --logdir runs/001_test_run