This readme file contains instructions that will be useful in the github repository, or can be read as stand a lone -- instructions on how to run the entire analysis, either through Makefile, runall.py or runall.R
.
├── analysis <- Directory to work on your analysis
├── data
│ ├── external <- Data from third party sources.
│ ├── intermediate <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
├── docs <- Space for documentation
├── .env <- Store your secrets and config variables in a special file
├── env <- Will contain the Python executable files and installed libraries for your virtualenv environment
├── .gitignore <- Avoids uploading data, credentials, outputs, system files etc
├── LICENCE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── models <- Trained and serialized models, model predictions, or model summaries
├── notes <- Data analysis notes. Can also contain jupyter notebook
│ ├── project_notes.md
│ └── project_notes.org
├── paper <- Manuscript or other dissemination files
│ ├── biblio.bib
│ ├── definitions.tex
│ ├── figures <- Generated graphics and figures to be used in reporting
│ ├── paper_template.org
│ └── section_or_appendix
│ └── description
│ ├── figures
│ └── table.tex
├── README.md <- The top-level README for developers using this project.
├── references <- Data dictionaries, manuals, etc.
├── requirements.txt <- Install the environment dependencies with: `pip install -r requirements.txt`
├── runall.py <- execute the pipeline in python
├── runall.R <- or, execute the pipeline in R
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── src <- Source code for use in this project.
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ ├── functions.R
│ ├── __init__.py <- Makes src a Python module
│ ├── models <- Scripts to train models and then use trained models to make predictions. Scripts to fit data and features
│ │ ├── predict_model.py
│ │ └── train_model.py
│ ├── utilities.R
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
└── tox.ini <- Automate testing, cf. https://tox.readthedocs.io/en/latest/.