-
Notifications
You must be signed in to change notification settings - Fork 152
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(examples): add example 31 for half precision training
Signed-off-by: Pablo Carmona Gonzalez <[email protected]>
- Loading branch information
1 parent
7ee0f44
commit 0877c23
Showing
1 changed file
with
83 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
# type: ignore | ||
# pylint: disable-all | ||
# -*- coding: utf-8 -*- | ||
|
||
# (C) Copyright 2020, 2021, 2022, 2023, 2024 IBM. All Rights Reserved. | ||
# | ||
# This code is licensed under the Apache License, Version 2.0. You may | ||
# obtain a copy of this license in the LICENSE.txt file in the root directory | ||
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. | ||
# | ||
# Any modifications or derivative works of this code must retain this | ||
# copyright notice, and modified files need to carry a notice indicating | ||
# that they have been altered from the originals. | ||
|
||
"""aihwkit example 31: Using half precision training. | ||
This example demonstrates how to use half precision training with aihwkit. | ||
""" | ||
# pylint: disable=invalid-name | ||
|
||
import tqdm | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torchvision import datasets, transforms | ||
from aihwkit.simulator.configs import InferenceRPUConfig, TorchInferenceRPUConfig | ||
from aihwkit.nn.conversion import convert_to_analog | ||
from aihwkit.optim import AnalogSGD | ||
from aihwkit.simulator.parameters.enums import RPUDataType | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
class Net(nn.Module): | ||
def __init__(self): | ||
super(Net, self).__init__() | ||
self.conv1 = nn.Conv2d(1, 32, 3, 1) | ||
self.conv2 = nn.Conv2d(32, 64, 3, 1) | ||
self.dropout1 = nn.Dropout(0.25) | ||
self.dropout2 = nn.Dropout(0.5) | ||
self.fc1 = nn.Linear(9216, 128) | ||
self.fc2 = nn.Linear(128, 10) | ||
|
||
def forward(self, x): | ||
x = self.conv1(x) | ||
x = F.relu(x) | ||
x = self.conv2(x) | ||
x = F.relu(x) | ||
x = F.max_pool2d(x, 2) | ||
x = self.dropout1(x) | ||
x = torch.flatten(x, 1) | ||
x = self.fc1(x) | ||
x = F.relu(x) | ||
x = self.dropout2(x) | ||
x = self.fc2(x) | ||
output = F.log_softmax(x, dim=1) | ||
return output | ||
|
||
if __name__ == "__main__": | ||
model = Net() | ||
rpu_config = TorchInferenceRPUConfig() | ||
model = convert_to_analog(model, rpu_config) | ||
nll_loss = torch.nn.NLLLoss() | ||
transform=transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
]) | ||
dataset = datasets.MNIST('data', train=True, download=True, transform=transform) | ||
train_loader = torch.utils.data.DataLoader(dataset, batch_size=32) | ||
|
||
model = model.to(device=device, dtype=torch.bfloat16) | ||
optimizer = AnalogSGD(model.parameters(), lr=0.1) | ||
model = model.train() | ||
|
||
pbar = tqdm.tqdm(enumerate(train_loader)) | ||
for batch_idx, (data, target) in pbar: | ||
data, target = data.to(device=device, dtype=torch.bfloat16), target.to(device=device) | ||
optimizer.zero_grad() | ||
output = model(data) | ||
loss = F.nll_loss(output.float(), target) | ||
loss.backward() | ||
optimizer.step() | ||
pbar.set_description(f"Loss {loss:.4f}") |