-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
142 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
# PolyKin: A polymerization kinetics library for Python. | ||
# | ||
# Copyright Hugo Vale 2024 | ||
|
||
from dataclasses import dataclass | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from numpy import dot | ||
from scipy.optimize import minimize | ||
|
||
from polykin.copolymerization.binary import (inst_copolymer_binary, | ||
monomer_drift_binary) | ||
from polykin.utils.exceptions import FitError | ||
from polykin.utils.types import FloatVector | ||
|
||
|
||
@dataclass(frozen=True) | ||
class CopoDataset_Ff(): | ||
"""Dataclass for instantaneous copolymerization data of the form F(f).""" | ||
name: str | ||
f1: FloatVector | ||
F1: FloatVector | ||
scale_f: FloatVector | ||
scale_F: FloatVector | ||
weight: float = 1. | ||
|
||
|
||
@dataclass(frozen=True) | ||
class CopoDataset_fx(): | ||
"""Dataclass for drift copolymerization data of the form f1(x).""" | ||
name: str | ||
f10: float | ||
x: FloatVector | ||
f1: FloatVector | ||
scale_x: FloatVector | ||
scale_f: FloatVector | ||
weight: float = 1. | ||
|
||
|
||
@dataclass(frozen=True) | ||
class CopoDataset_Fx(): | ||
"""Dataclass for drift copolymerization data of the form F1(x).""" | ||
name: str | ||
f10: float | ||
x: FloatVector | ||
F1: FloatVector | ||
scale_x: FloatVector | ||
scale_F: FloatVector | ||
weight: float = 1. | ||
|
||
|
||
def fit_copo(data_Ff: list[CopoDataset_Ff] = [], | ||
data_fx: list[CopoDataset_fx] = [], | ||
data_Fx: list[CopoDataset_Fx] = [], | ||
initial_guess: tuple[float, float] = (1.0, 1.0), | ||
alpha: float = 0.05, | ||
method='Powell', | ||
plots: bool = False | ||
): | ||
"Warning: This is work in progress!" | ||
|
||
def sse(r: tuple[float, float]) -> float: | ||
"Total sum of squared errors." | ||
res = 0. | ||
# F(f) datasets | ||
for ds in data_Ff: | ||
F1_est = inst_copolymer_binary(ds.f1, *r) | ||
ey = (ds.F1 - F1_est)/ds.scale_F | ||
res += ds.weight*dot(ey, ey) | ||
|
||
# f(x) datasets | ||
for ds in data_fx: | ||
f1_est = monomer_drift_binary(ds.f10, ds.x, *r) | ||
ey = (ds.f1 - f1_est)/ds.scale_f | ||
res += ds.weight*dot(ey, ey) | ||
|
||
# f(x) datasets | ||
for ds in data_Fx: | ||
f1_est = monomer_drift_binary(ds.f10, ds.x, *r) | ||
F1_est = inst_copolymer_binary(f1_est, *r) | ||
ey = (ds.F1 - F1_est)/ds.scale_F | ||
res += ds.weight*dot(ey, ey) | ||
return res | ||
|
||
# Parameter estimation | ||
sol = minimize(sse, | ||
x0=initial_guess, | ||
bounds=((1e-3, 1e2), (1e-3, 1e2)), | ||
method=method, | ||
options={'maxiter': 200}) | ||
if sol.success: | ||
ropt = sol.x | ||
# get cov as well - need to learn the math | ||
else: | ||
raise FitError(sol.message) | ||
|
||
if plots: | ||
# Plot F(f) data | ||
if data_Ff: | ||
fig, ax = plt.subplots() | ||
ax.set_xlabel(r"$f_1$") | ||
ax.set_ylabel(r"$F_1$") | ||
ax.set_xlim(0., 1.) | ||
ax.set_ylim(0., 1.) | ||
for ds in data_Ff: | ||
ax.scatter(ds.f1, ds.F1, label=ds.name) | ||
x = np.linspace(0., 0.999, 200) | ||
y = inst_copolymer_binary(x, *ropt) | ||
ax.plot(x, y) | ||
ax.legend(loc="best") | ||
|
||
# Plot f(x) data | ||
if data_fx: | ||
fig, ax = plt.subplots() | ||
ax.set_xlabel(r"$x$") | ||
ax.set_ylabel(r"$f_1$") | ||
ax.set_xlim(0., 1.) | ||
ax.set_ylim(0., 1.) | ||
x = np.linspace(0., 0.999, 200) | ||
for ds in data_fx: | ||
ax.scatter(ds.x, ds.f1, label=ds.name) | ||
f1_est = monomer_drift_binary(ds.f10, x, *ropt) | ||
ax.plot(x, f1_est) | ||
ax.legend(loc="best") | ||
|
||
# Plot F(x) data | ||
if data_Fx: | ||
fig, ax = plt.subplots() | ||
ax.set_xlabel(r"$x$") | ||
ax.set_ylabel(r"$F_1$") | ||
ax.set_xlim(0., 1.) | ||
ax.set_ylim(0., 1.) | ||
x = np.linspace(0., 0.999, 200) | ||
for ds in data_Fx: | ||
ax.scatter(ds.x, ds.F1, label=ds.name) | ||
f1_est = monomer_drift_binary(ds.f10, x, *ropt) | ||
F1_est = inst_copolymer_binary(f1_est, *ropt) | ||
ax.plot(x, F1_est) | ||
ax.legend(loc="best") | ||
|
||
return ropt |