Skip to content

High-quality datasets, tools, and concepts for LLM fine-tuning.

Notifications You must be signed in to change notification settings

HugoLaurencon/llm-datasets

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 

Repository files navigation

💾 LLM Datasets

🐦 Follow me on X • 🤗 Hugging Face • 💻 Blog • 📙 Hands-on GNN

High-quality datasets, tools, and concepts for LLM fine-tuning.


👍 What is a good dataset?

Data is the most valuable asset in LLM development. While datasets can't be directly evaluated like models, high-quality datasets have the following characteristics:

  • Accuracy: Samples should be factually correct, helpful to users, and well-written. Answers should also be relevant to their corresponding instructions.
  • Diversity: You want to cover as many use cases as possible to ensure proper instruction-following and relevant answers. This requires a wide range of topics, contexts, lengths, writing styles, etc. sampled in a representative way.
  • Complexity: The dataset should be representative of the language and tasks you expect the model to handle. It should include common language usage (everyday language), real-world scenarios (e.g., books, articles, websites, social media, conversation transcripts), and a variety of text lengths to help the model handle various input sizes.

Measuring accuracy can be easy in the case of mathematical problems using a Python interpreter, or near-impossible with open-ended, subjective questions. On the other hand, clustering datasets by topic is a good way of measuring diversity. Finally, complexity is difficult to assess without involving frontier models.

📅 Open SFT datasets

Once a model has been pre-trained on a next-token prediction task, supervised fine-tuning is used to turn it into an assistant capable of answering questions and achieving tasks. These datasets contain pairs of instructions and outputs to train LLMs to go beyond their pre-training objective. All the datasets listed here should be under permissive licensing (Apache 2.0, MIT, cc-by-4.0, etc.).

General-purpose

The goal of general-purpose datasets is to transform base models into versatile and capable assistants by exposing them to a wide range of high-quality data. These datasets often include a diverse mix of real-world and synthetic data, commonly generated using models like GPT-4.

Dataset # Authors Date Notes
Bagel >2M? Jon Durbin Jan 2024 Collection of datasets decontaminated with cosine similarity.
Hercules v4.5 1.72M Sebastian Gabarain Apr 2024 Large-scale general-purpose dataset with math, code, RP, etc. See v4 for the list of datasets.
Dolphin-2.9 1.39M Cognitive Computations Apr 2023 Large-scale general-purpose dataset used by the Dolphin models.
WildChat-1M 1.04M Zhao et al. May 2023 Real conversations between human users and GPT-3.5/4, including metadata. See the WildChat paper.
OpenHermes-2.5 1M Teknium Nov 2023 Another large-scale dataset used by the OpenHermes models.
SlimOrca 518k Lian et al. Sep 2023 Curated subset of OpenOrca using GPT-4-as-a-judge to remove wrong answers.
Tulu V2 Mix 326k Ivison et al. Nov 2023 Mix of high-quality datasets. See Tulu 2 paper.
UltraInteract SFT 289k Yuan et al. Apr 2024 Focus on math, coding, and logic tasks with step-by-step answers. See Eurus paper.
NeurIPS-LLM-data 204k Jindal et al. Nov 2023 Winner of NeurIPS LLM Efficiency Challenge, with an interesting data preparation strategy.
UltraChat 200k 200k Tunstall et al., Ding et al. Oct 2023 Heavily filtered version of the UItraChat dataset, consisting of 1.4M dialogues generated by ChatGPT.
WizardLM_evol_instruct_V2 143k Xu et al. Jun 2023 Latest version of Evol-Instruct applied to Alpaca and ShareGPT data. See WizardLM paper.
sft_datablend_v1 128k NVIDIA Jan 2024 Blend of publicly available datasets: OASST, CodeContests, FLAN, T0, Open_Platypus, and GSM8K and others (45 total).
Synthia-v1.3 119k Migel Tissera Nov 2023 High-quality synthetic data generated using GPT-4.
FuseChat-Mixture 95k Wan et al. Feb 2024 Selection of samples from high-quality datasets. See FuseChat paper.
oasst1 84.4k Köpf et al. Mar 2023 Human-generated assistant-style conversation corpus in 35 different languages. See OASST1 paper and oasst2.
WizardLM_evol_instruct_70k 70k Xu et al. Apr 2023 Evol-Instruct applied to Alpaca and ShareGPT data. See WizardLM paper.
airoboros-3.2 58.7k Jon Durbin Dec 2023 High-quality uncensored dataset.
ShareGPT_Vicuna_unfiltered 53k anon823 1489123 Mar 2023 Filtered version of the ShareGPT dataset, consisting of real conversations between users and ChatGPT.
lmsys-chat-1m-smortmodelsonly 45.8k Nebulous, Zheng et al. Sep 2023 Filtered version of lmsys-chat-1m with responses from GPT-4, GPT-3.5-turbo, Claude-2, Claude-1, and Claude-instant-1.
Open-Platypus 24.9k Lee et al. Sep 2023 Collection of datasets that were deduplicated using Sentence Transformers (it contains an NC dataset). See Platypus paper.
databricks-dolly-15k 15k Conover et al. May 2023 Generated by Databricks employees, prompt/response pairs in eight different instruction categories, including the seven outlined in the InstructGPT paper.

Math & Logic

LLMs often struggle with mathematical reasoning and formal logic, which has led to the creation of specialized datasets. These datasets extend beyond pure mathematics, encompassing a wide range of problems that require systematic thinking and step-by-step reasoning, ultimately enabling LLMs to tackle complex real-world challenges that involve logical deduction and quantitative analysis.

Dataset # Authors Date Notes
OpenMathInstruct-1 5.75M Toshniwal et al. Feb 2024 Problems from GSM8K and MATH, solutions generated by Mixtral-8x7B
MetaMathQA 395k Yu et al. Dec 2023 Bootstrap mathematical questions by rewriting them from multiple perspectives. See MetaMath paper.
MathInstruct 262k Yue et al. Sep 2023 Compiled from 13 math rationale datasets, six of which are newly curated, and focuses on chain-of-thought and program-of-thought.
Orca-Math 200k Mitra et al. Feb 2024 Grade school math world problems generated using GPT4-Turbo. See Orca-Math paper.

Code

Code is another challenging domain for LLMs that lack specialized pre-training. Code datasets, containing diverse programming language examples, are used to fine-tune LLMs and enhance their ability to understand, generate, and analyze code, enabling them to serve as effective coding assistants.

Dataset # Authors Date Notes
CodeFeedback-Filtered-Instruction 157k Zheng et al. Feb 2024 Filtered version of Magicoder-OSS-Instruct, ShareGPT (Python), Magicoder-Evol-Instruct, and Evol-Instruct-Code.
Tested-143k-Python-Alpaca 143k Vezora Mar 2024 Collection of generated Python code that passed automatic tests to ensure high quality.
glaive-code-assistant 136k Glaive.ai Sep 2023 Synthetic data of problems and solutions with ~60% Python samples. Also see the v2 version.
Magicoder-Evol-Instruct-110K 110k Wei et al. Nov 2023 A decontaminated version of evol-codealpaca-v1. Decontamination is done in the same way as StarCoder (bigcode decontamination process). See Magicoder paper.
dolphin-coder 109k Eric Hartford Nov 2023 Dataset transformed from leetcode-rosetta.
synthetic_tex_to_sql 100k Gretel.ai Apr 2024 Synthetic text-to-SQL samples (~23M tokens), covering diverse domains.
sql-create-context 78.6k b-mc2 Apr 2023 Cleansed and augmented version of the WikiSQL and Spider datasets.
Magicoder-OSS-Instruct-75K 75k Wei et al. Nov 2023 OSS-Instruct dataset generated by gpt-3.5-turbo-1106. See Magicoder paper.
Code-Feedback 66.4k Zheng et al. Feb 2024 Diverse Code Interpreter-like dataset with multi-turn dialogues and interleaved text and code responses. See OpenCodeInterpreter paper.
self-oss-instruct-sc2-exec-filter-50k 50.7k Lozhkov et al. Apr 2024 Created in three steps with seed functions from TheStack v1, self-instruction with StarCoder2, and self-validation. See the blog post.

Conversation & Role-Play

Many datasets focus on pairs of instructions and outputs, but chat models are often used in conversational settings. Conversational and role-play datasets expose LLMs to the patterns, nuances, and context-dependent nature of real conversations, allowing them to generate more natural, and engaging dialogues.

Dataset # Authors Date Notes
Bluemoon 290k Squish42 Jun 2023 Posts from the Blue Moon roleplaying forum cleaned and scraped by a third party.
PIPPA 16.8k Gosling et al., kingbri Aug 2023 Deduped version of Pygmalion's PIPPA in ShareGPT format.
Capybara 16k LDJnr Dec 2023 Strong focus on information diversity across a wide range of domains with multi-turn conversations.
RPGPT_PublicDomain-alpaca 4.26k practical dreamer May 2023 Synthetic dataset of public domain character dialogue in roleplay format made with build-a-dataset
Pure-Dove 3.86k LDJnr Sep 2023 Highly filtered multi-turn conversations between GPT-4 and real humans
Opus Samantha 1.85k macadelicc Apr 2024 Multi-turn conversations with Claude 3 Opus.
LimaRP-augmented 804 lemonilia, grimulkan Jan 2024 Augmented and cleansed version of LimaRP, consisting of human roleplaying conversations.

Agent & Function calling

Function calling allows large language models (LLMs) to execute predefined functions with parameters inferred from user prompts, rather than generating standard text responses. This enables LLMs to seamlessly integrate with external systems, perform complex operations, and provide more accurate and contextually relevant responses.

Dataset # Authors Date Notes
glaive-function-calling-v2 113k Sahil Chaudhary Sep 2023 High-quality dataset with pairs of instructions and answers in different languages.
See Locutusque/function-calling-chatml for a variant without conversation tags.
Agent-FLAN 34.4k internlm Mar 2024 Mix of AgentInstruct, ToolBench, and ShareGPT datasets.

⚖️ Preference alignment

W.I.P.

🔧 Tools

To create a high-quality dataset, focus on carefully curating a diverse set of relevant, accurate and informative examples rather than simply maximizing dataset size.

Start by aggregating available data from various sources (open-source or not) and apply filters like data deduplication and data quality. If the initial dataset is small or insufficient, consider synthetically generating additional data that mirrors its quality and style. Iteratively explore and refine the dataset by assessing model performance, identifying gaps and collecting or generate data to address those shortcomings.

Data deduplication

  • MinHash: fuzzy deduplication with hashing, sorting, and Jaccard similarity (preferred technique).
  • BLOOM filters: fuzzy deduplication with hashing and fixed-size vector.
  • Sentence deduplication: exact sentence matching.

Data quality

  • Rule-based filtering: Remove samples based on a list of unwanted words, like refusals and "As an AI assistant" (example).
  • Argilla: Open-source data curation platform that allows you to filter and annotate datasets in a collaborative way.
  • Using LLM-as-a-judge: Colab notebook that provides code to rate outputs with Mixtral-7x8B.

Data exploration

  • Lilac: Tool to curate better data for LLMs, used by NousResearch, databricks, cohere, Alignment Lab AI. It can also apply filters.
  • Nomic Atlas: Interact with instructed data to find insights and store embeddings.
  • text-clustering: Embed, cluster, and label text datasets using Sentence Transformers, UMAP, DBSCAN, and an LLM.
  • BunkaTopics: Data cleaning and topic modeling visualization.

Data generation

  • Distilabel: General-purpose framework that can generate and augment data (SFT, DPO) with techniques like UltraFeedback and DEITA.
  • Auto Data: Lightweight library to automatically generate fine-tuning datasets with API models.
  • Bonito: Library for generating synthetic instruction tuning datasets for your data without GPT (see also AutoBonito).
  • Augmentoolkit: Framework to convert raw text into datasets using open-source and closed-source models.

Acknowledgments

Special thanks to geronimi73 for the PR.

References

Please let me know if a dataset is not properly credited.

  • Wei-Lin Chiang et al, "Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality," 2023.
  • Yihan Cao et al, "Instruction Mining: When Data Mining Meets Large Language Model Finetuning," 2023.
  • Subhabrata Mukherjee et al, "Orca: Progressive Learning from Complex Explanation Traces of GPT-4," 2023.
  • Chunting Zhou et al, "LIMA: Less Is More for Alignment," 2023.
  • Suriya Gunasekar et al, "Textbooks Are All You Need," 2023.
  • Lichang Chen et al, "AlpaGasus: Training A Better Alpaca with Fewer Data," 2024.
  • Zheng Cai et al, "InternLM2 Technical Report," 2024.
  • Lifan Yuan et al, "Advancing LLM Reasoning Generalists with Preference Trees," 2024.
  • Wei Liu et al, "What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning," 2024.
  • Xingyao Wang et al, "MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language Feedback," 2024.

About

High-quality datasets, tools, and concepts for LLM fine-tuning.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published