Model uses Named Entity Recognition concept to tag words in arabic text.
It consists of Bi-directional GRU units(One forward and the other is backward) and a CRF layer referenced from https://arxiv.org/pdf/1508.01991v1.pdf
Model is trained on ANERCorp dataset.more. And uses FastText's Arabic vectors for word embedding.
No. epochs: 20
Accuracy: 94.2%
Classification report:
precision recall f1-score support
LOC 0.99 0.99 0.99 11055
PERS 0.74 0.65 0.69 824
ORG 0.64 0.46 0.54 503
MISC 0.63 0.38 0.47 237
avg / total 0.95 0.94 0.94 12619
F1_score: 95.0%
ماذا يفعل طلال عبد الهادي في دبي بعد ما رجع من برلين؟ كان يعمل هناك في شركة فولكسفاجن، صحيح؟