Skip to content

Commit

Permalink
Eliminate duplicate theorems in scripts, otherwise allow rebind.
Browse files Browse the repository at this point in the history
  • Loading branch information
jhlchan committed Sep 21, 2023
1 parent 58d0603 commit b6d5e58
Show file tree
Hide file tree
Showing 55 changed files with 218 additions and 2,648 deletions.
73 changes: 0 additions & 73 deletions examples/AKS/compute/computeBasicScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -929,79 +929,6 @@ val exp_mod_binary_eqn = store_thm(
simp[exp_mod_binary_0, ONE_MOD, EXP] >>
metis_tac[exp_mod_binary_suc, MOD_MOD, MOD_TIMES2, EXP]);

(* Another proof of the same result *)

(* Theorem: exp_mod_binary a n m = (a ** n) MOD m *)
(* Proof:
If m = 0, true trivially by exp_mod_binary_def
If m = 1,
exp_mod_binary a n m
= 1 by exp_mod_binary_def
= (a ** n) MOD 1 by MOD_1
If m <> 0 and m <> 1,
Then 1 < m.
By complete induction on n.
Assume: !j. j < n ==> !a. exp_mod_binary a j m = a ** j MOD m
To show: exp_mod_binary a n m = a ** n MOD m
If n = 0,
exp_mod_binary a 0 m
= 1 by exp_mod_binary_0
= 1 MOD m by ONE_MOD, 1 < m
= (a ** 0) MOD m by EXP
If n <> 0,
Then HALF n < n by HALF_LT
If EVEN n,
Then n MOD 2 = 0 by EVEN_MOD2
exp_mod_binary a n m
= exp_mod_binary ((a * a) MOD m) (HALF n) m by exp_mod_binary_def, n MOD 2 = 0
= exp_mod_binary ((a ** 2) MOD m) (HALF n) m by EXP_2
= (((a ** 2) MOD m) ** (HALF n)) MOD m by induction hypothesis, HALF n < n
= ((a ** 2) ** (HALF n)) MOD m by EXP_MOD, 0 < m
= (a ** (2 * HALF n)) MOD m by EXP_EXP_MULT
= (a ** n) MOD m by EVEN_HALF
If ~EVEN n,
Then ODD n by ODD_EVEN
exp_mod_binary a n m
= (a * exp_mod_binary ((a * a) MOD m) (HALF n) m) MOD m by exp_mod_binary_def, n MOD 2 <> 0
= (a * exp_mod_binary ((a ** 2) MOD m) (HALF n) m) MOD m by EXP_2
= (a * (((a ** 2) MOD m) ** (HALF n)) MOD m) MOD m by induction hypothesis, HALF n < n
= (a * ((a ** 2) ** (HALF n)) MOD m) MOD m by EXP_MOD, 0 < m
= (a * (a ** (2 * HALF n)) MOD m) MOD m by EXP_EXP_MULT
= (a * a ** (2 * HALF n)) MOD m by MOD_TIMES2, 0 < m
= (a ** (1 + 2 * HALF n)) MOD m by EXP_ADD
= (a ** (2 * HALF n + 1)) MOD m by arithmetic
= (a ** n) MOD m by ODD_HALF
*)
Theorem exp_mod_binary_eqn[allow_rebind]:
!m n a. exp_mod_binary a n m = (a ** n) MOD m
Proof
ntac 2 strip_tac >>
Cases_on ‘m = 0’ >-
rw[Once exp_mod_binary_def] >>
Cases_on ‘m = 1’ >-
rw[Once exp_mod_binary_def] >>
1 < m /\ 0 < m’ by decide_tac >>
completeInduct_on ‘n’ >>
rpt strip_tac >>
Cases_on ‘n = 0’ >-
rw[exp_mod_binary_0, EXP] >>
0 < m’ by decide_tac >>
‘HALF n < n’ by rw[HALF_LT] >>
rw[Once exp_mod_binary_def] >| [
‘((a ** 2) ** HALF n) MOD m = (a ** (2 * HALF n)) MOD m’
by rw[EXP_EXP_MULT] >>
‘_ = (a ** n) MOD m’ by rw[GSYM EVEN_HALF, EVEN_MOD2] >>
rw[],
‘ODD n’ by rw[ODD_EVEN] >>
‘(a * (a ** 2) ** HALF n) MOD m = (a * (a ** (2 * HALF n) MOD m)) MOD m’
by rw[EXP_EXP_MULT] >>
‘_ = (a * a ** (2 * HALF n)) MOD m’ by metis_tac[MOD_TIMES2, MOD_MOD] >>
‘_ = (a ** (2 * HALF n + 1)) MOD m’ by rw[EXP_ADD] >>
‘_ = a ** n MOD m’ by metis_tac[ODD_HALF] >>
rw[]
]
QED

(* Theorem: exp_mod_binary 0 n m = (if n = 0 then 1 else 0) MOD m *)
(* Proof:
exp_mod_binary 0 n m
Expand Down
6 changes: 3 additions & 3 deletions examples/AKS/compute/computePolyScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ open rich_listTheory; (* for FRONT and LAST *)
(turn_exp p n) (DROP n q))
unity_mod_mult_alt |- !r. Ring r /\ #1 <> #0 ==> !p q. weak p /\ weak q /\ q <> |0| ==>
(unity_mod_mult r p q = psum (GENLIST (\k. q ' k o turn_exp p k) (SUC (deg q))))
unity_mod_mult_zero |- !r p. (unity_mod_mult r p |0| = |0|) /\ (unity_mod_mult r |0| p = |0|)
unity_mod_mult_zero_alt |- !r p. (unity_mod_mult r p |0| = |0|) /\ (unity_mod_mult r |0| p = |0|)
unity_mod_mult_cons |- !r. Ring r ==> !p h t. weak p /\ weak (h::t) ==>
(unity_mod_mult r p (h::t) = h o p || unity_mod_mult r (turn p) t)
unity_mod_mult_weak |- !r. Ring r ==> !p q. weak p /\ weak q ==> weak (unity_mod_mult r p q)
Expand Down Expand Up @@ -1232,8 +1232,8 @@ val unity_mod_mult_alt = store_thm(

(* Theorem: (unity_mod_mult r p |0| = |0|) /\ (unity_mod_mult r |0| p = |0|) *)
(* Proof: by unity_mod_mult_def, poly_slide_zero. *)
val unity_mod_mult_zero = store_thm(
"unity_mod_mult_zero",
val unity_mod_mult_zero_alt = store_thm(
"unity_mod_mult_zero_alt",
``!r:'a ring p. (unity_mod_mult r p |0| = |0|) /\ (unity_mod_mult r |0| p = |0|)``,
rw[unity_mod_mult_def, poly_slide_zero]);

Expand Down
4 changes: 2 additions & 2 deletions examples/AKS/machine/countAKSScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -1223,7 +1223,7 @@ val aksM_steps_base = store_thm(
so 1 < size n by size n <> 0, size n <> 1
==> 1 < size n ** 5 by ONE_LT_EXP
Thus 1 + HALF (size n ** 5)
<= size n ** 5 by SUC_HALF_LE
<= size n ** 5 by HALF_ADD1_LE
or c <= size n ** 5 by above
and size c <= size (size n ** 5) by size_monotone_le
<= 5 * size (size n) by size_exp_upper_alt
Expand Down Expand Up @@ -1282,7 +1282,7 @@ val aksM_steps_upper = store_thm(
`size n <> 1` by fs[size_eq_1] >>
`1 < size n` by decide_tac >>
`1 < size n ** 5` by rw[ONE_LT_EXP] >>
`1 + HALF (size n ** 5) <= size n ** 5` by rw[SUC_HALF_LE] >>
`1 + HALF (size n ** 5) <= size n ** 5` by rw[HALF_ADD1_LE] >>
decide_tac) >>
`size c <= 5 * size n` by
(`size c <= size (size n ** 5)` by rw[size_monotone_le] >>
Expand Down
4 changes: 0 additions & 4 deletions examples/AKS/machine/countBasicScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -784,10 +784,6 @@ val power_twoM_steps_1 = store_thm(
rw[Once power_twoM_steps_thm]);

(* Derive theorems *)
val power_twoM_steps_upper = save_thm("power_twoM_steps_upper",
power_ofM_steps_upper |> SPEC ``2`` |> SIMP_RULE (srw_ss()) [GSYM power_twoM_def]);
val power_twoM_steps_bound = save_thm("power_twoM_steps_bound",
power_ofM_steps_bound |> SPEC ``2`` |> SIMP_RULE (srw_ss()) [GSYM power_twoM_def]);
val power_twoM_steps_O_poly = save_thm("power_twoM_steps_O_poly",
power_ofM_steps_O_poly |> SPEC ``2`` |> SIMP_RULE (srw_ss()) [GSYM power_twoM_def]);
val power_twoM_steps_big_O = save_thm("power_twoM_steps_big_O",
Expand Down
7 changes: 0 additions & 7 deletions examples/AKS/machine/countModuloScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -388,13 +388,6 @@ val msqM_def = Define`
msqM m x = mmulM m x x
`;

(* Theorem: valueOf(msqM m x) = (x * x) MOD m *)
(* Proof: by msqM_def *)
val msqM_value = store_thm(
"msqM_value[simp]",
``!m x. valueOf(msqM m x) = (x * x) MOD m``,
simp[msqM_def]);

(* Obtain theorems *)
val msqM_value = save_thm("msqM_value[simp]",
mmulM_value |> SPEC ``m:num`` |> SPEC ``x:num`` |> SPEC ``x:num``
Expand Down
30 changes: 0 additions & 30 deletions examples/AKS/machine/countPolyScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -2794,36 +2794,6 @@ This puts poly_frontM_steps in the category: list loop with body cover and exit.
suitable for: loop_list_count_cover_exit_le
*)

(* Theorem: stepsOf (poly_frontM p) <= 1 + 5 * LENGTH p *)
(* Proof:
Let body = (\p. 4 + if (TL p = []) then 0 else 1),
cover = (\p. 5),
exit = (\p. TL p = []),
loop = (\p. stepsOf (poly_frontM p)).
Then !p. loop p = if (p = []) then 1 else body p + if exit p then 0 else loop (TL p)
by poly_frontM_steps_thm
Now !x. body x <= cover x by cases on TL p,
and !x y. x <= y ==> cover x <= cover y by cover being a constant
Thus loop p <= 1 + cover p * LENGTH p by loop_list_count_cover_exit_le
= 1 + 5 * LENGTH p
*)
val poly_frontM_steps_upper = store_thm(
"poly_frontM_steps_upper",
``!p. stepsOf (poly_frontM p) <= 1 + 5 * LENGTH p``,
rpt strip_tac >>
qabbrev_tac `body = \p. 4 + if (TL p = []) then 0 else 1` >>
qabbrev_tac `cover = \p:'a list. 5` >>
qabbrev_tac `exit = \p. TL p = []` >>
qabbrev_tac `loop = \p. stepsOf (poly_frontM p)` >>
`loop p <= 1 + 5 * LENGTH p` suffices_by rw[] >>
`!x. loop x = if x = [] then 1 else body x + if exit x then 0 else loop (TL x)` by metis_tac[poly_frontM_steps_thm] >>
`!x. body x <= cover x` by rw[Abbr`body`, Abbr`cover`] >>
`!x y. x <= y ==> cover x <= cover y` by rw[Abbr`cover`] >>
imp_res_tac loop_list_count_cover_exit_le >>
metis_tac[]);

(* Michael's proof of the same theorem. *)

(* Theorem: stepsOf (poly_frontM p) <= 1 + 5 * LENGTH p *)
(* Proof:
Let body = (\p. 4 + if (TL p = []) then 0 else 1),
Expand Down
118 changes: 0 additions & 118 deletions examples/AKS/theories/AKSimprovedScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -1126,42 +1126,6 @@ val AKS_main_ulog_2b = store_thm(
This leads to a contradiction, as [1], [2] and [3] are incompatible.
*)
val AKS_main_ulog_2b = store_thm(
"AKS_main_ulog_2b",
``!(r:'a field). FiniteField r /\ (CARD R = char r) ==> (* condition on r *)
!n k. 0 < n /\ 0 < k /\ 1 < ordz k (char r) /\
char r divides n /\ (* conditions on n *)
k < char r /\ (ulog n) ** 2 <= ordz k n /\ (* conditions on k *)
poly_intro_range r k n (SQRT (phi k) * (ulog n)) (* AKS tests *)
==> perfect_power n (char r)``,
rpt (stripDup[FiniteField_def]) >>
qabbrev_tac `p = char r` >>
qabbrev_tac `a = (ulog n) ** 2` >>
qabbrev_tac `s = SQRT (phi k) * ulog n` >>
`prime p` by rw[finite_field_char, Abbr`p`] >>
`1 < p` by rw[ONE_LT_PRIME] >>
`n <> 1` by metis_tac[DIVIDES_ONE, LESS_NOT_EQ] >>
`k <> 1` by metis_tac[ZN_order_mod_1, LESS_NOT_EQ] >>
`1 < n /\ 1 < k` by decide_tac >>
Cases_on `perfect_power n 2` >-
metis_tac[prime_divides_prime_power, perfect_power_def, PRIME_2] >>
`coprime n k` by
(`0 < a` by rw[ulog_pos, Abbr`a`] >>
`ordz k n <> 0` by decide_tac >>
metis_tac[ZN_order_eq_0, GCD_SYM]) >>
qabbrev_tac `t = CARD M` >>
`n IN N` by fs[setN_element] >>
`n ** SQRT t < 2 ** MIN s t` by rw[modN_card_in_exp_lt_bound_3, Abbr`t`, Abbr`s`] >>
`?z. (forderz X = k) /\ mifactor z (unity k)` by metis_tac[poly_unity_special_factor_exists] >>
`0 < s` by rw[sqrt_phi_times_ulog, Abbr`s`] >>
`s <= phi k` by metis_tac[ZN_order_condition_property_2, GCD_SYM] >>
`phi k < k` by rw[phi_lt] >>
`s < p` by decide_tac >>
`2 ** MIN s t <= CARD (Q z)` by rw[modP_card_lower_1, Abbr`t`] >>
`coprime k p` by metis_tac[coprime_prime_factor_coprime, GCD_SYM] >>
spose_not_then strip_assume_tac >>
`CARD (Q z) <= n ** SQRT t` by rw[modP_card_upper_better, Abbr`t`] >>
decide_tac);

(* This is a much shorter proof of the AKS main theorem! *)

Expand Down Expand Up @@ -1232,44 +1196,6 @@ val AKS_main_ulog_2b = store_thm(
This leads to a contradiction, as [A] and [B] are incompatible.
*)
val AKS_main_ulog_2b = store_thm(
"AKS_main_ulog_2b",
``!(r:'a field). FiniteField r /\ (CARD R = char r) ==> (* condition on r *)
!n k. 0 < n /\ 0 < k /\ 1 < ordz k (char r) /\
char r divides n /\ (* conditions on n *)
k < char r /\ (ulog n) ** 2 <= ordz k n /\ (* conditions on k *)
poly_intro_range r k n (SQRT (phi k) * (ulog n)) (* AKS tests *)
==> perfect_power n (char r)``,
rpt (stripDup[FiniteField_def]) >>
qabbrev_tac `p = char r` >>
qabbrev_tac `a = (ulog n) ** 2` >>
qabbrev_tac `s = SQRT (phi k) * ulog n` >>
`prime p` by rw[finite_field_char, Abbr`p`] >>
`1 < p` by rw[ONE_LT_PRIME] >>
`n <> 1` by metis_tac[DIVIDES_ONE, LESS_NOT_EQ] >>
`k <> 1` by metis_tac[ZN_order_mod_1, LESS_NOT_EQ] >>
`1 < n /\ 1 < k` by decide_tac >>
Cases_on `perfect_power n 2` >-
metis_tac[prime_divides_prime_power, perfect_power_def, PRIME_2] >>
spose_not_then strip_assume_tac >>
`coprime n k` by
(`0 < a` by rw[ulog_pos, Abbr`a`] >>
`ordz k n <> 0` by decide_tac >>
metis_tac[ZN_order_eq_0, GCD_SYM]) >>
qabbrev_tac `t = CARD M` >>
`n IN N` by fs[setN_element] >>
`2 ** MIN s t <= n ** SQRT t` by
(`?z. (forderz X = k) /\ mifactor z (unity k)` by metis_tac[poly_unity_special_factor_exists] >>
`0 < s` by rw[sqrt_phi_times_ulog, Abbr`s`] >>
`s <= phi k` by metis_tac[ZN_order_condition_property_2, GCD_SYM] >>
`phi k < k` by rw[phi_lt] >>
`s < p` by decide_tac >>
`2 ** MIN s t <= CARD (Q z)` by rw[modP_card_lower_1, Abbr`t`] >>
`coprime k p` by metis_tac[coprime_prime_factor_coprime, GCD_SYM] >>
`CARD (Q z) <= n ** SQRT t` by rw[modP_card_upper_better, Abbr`t`] >>
decide_tac) >>
`n ** SQRT t < 2 ** MIN s t` by rw[modN_card_in_exp_lt_bound_3, Abbr`t`, Abbr`s`] >>
decide_tac);

(* Idea:
The third proof derives a contradiction by:
Expand Down Expand Up @@ -1346,50 +1272,6 @@ val AKS_main_ulog_2b = store_thm(
Since [A] and [B] are contradictory, the proof is complete.
*)
val AKS_main_ulog_2b = store_thm(
"AKS_main_ulog_2b",
``!(r:'a field). FiniteField r /\ (CARD R = char r) ==> (* condition on r *)
!n k. 0 < n /\ 0 < k /\ 1 < ordz k (char r) /\
char r divides n /\ (* conditions on n *)
k < char r /\ (ulog n) ** 2 <= ordz k n /\ (* conditions on k *)
poly_intro_range r k n (SQRT (phi k) * (ulog n)) (* AKS tests *)
==> perfect_power n (char r)``,
rpt (stripDup[FiniteField_def]) >>
qabbrev_tac `p = char r` >>
qabbrev_tac `a = (ulog n) ** 2` >>
qabbrev_tac `s = SQRT (phi k) * ulog n` >>
`prime p` by rw[finite_field_char, Abbr`p`] >>
`1 < p` by rw[ONE_LT_PRIME] >>
`n <> 1` by metis_tac[DIVIDES_ONE, LESS_NOT_EQ] >>
`k <> 1` by metis_tac[ZN_order_mod_1, LESS_NOT_EQ] >>
`1 < n /\ 1 < k` by decide_tac >>
Cases_on `perfect_power n 2` >-
metis_tac[prime_divides_prime_power, perfect_power_def, PRIME_2] >>
`coprime n k` by
(`0 < a` by rw[ulog_pos, Abbr`a`] >>
`ordz k n <> 0` by decide_tac >>
metis_tac[ZN_order_eq_0, GCD_SYM]) >>
`n IN N` by metis_tac[setN_element] >>
`?z. mifactor z (unity k) /\ (deg z = ordz k p) /\ (forderz X = k)` by metis_tac[poly_unity_special_factor_exists] >>
`2 ** MIN s (CARD M) < CARD (Q z)` by
((irule modP_card_lower_better >> simp[]) >>
rpt strip_tac >| [
`s <= phi k` by metis_tac[ZN_order_condition_property_2, GCD_SYM] >>
`phi k < k` by rw[phi_lt] >>
decide_tac,
rw[sqrt_phi_times_ulog, Abbr`s`],
`n <> 2` by metis_tac[perfect_power_self] >>
`1 < a` by rw[ulog_sq_gt_1, Abbr`a`] >>
`1 < ordz k n` by decide_tac >>
`ordz k n <= CARD M` by rw[modN_card_lower] >>
decide_tac
]) >>
spose_not_then strip_assume_tac >>
`CARD (Q z) <= 2 ** MIN s (CARD M)` by
(`CARD (Q z) <= 2 ** MIN (SQRT (phi k) * ulog n) (CARD M)` suffices_by rw[Abbr`s`] >>
(irule modP_card_upper_better_3 >> simp[]) >>
metis_tac[coprime_prime_factor_coprime, GCD_SYM]) >>
decide_tac);

(* Theorem: The AKS Main Theorem (no mention of FiniteField, but mentions (ZN n))
Given a number n > 1,
Expand Down
9 changes: 5 additions & 4 deletions examples/algebra/field/fieldInstancesScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -633,17 +633,18 @@ val ZN_finite_field = store_thm(
Note 0 < p /\ 0 * y = 0 ==> 0 MOD p = 0 by MULT, ZERO_MOD
and 0 < p /\ x * 0 = 0 ==> 0 MOD p = 0 by MULT_0, ZERO_MOD
*)
val ZN_finite_field = store_thm(
"ZN_finite_field",
``!p. prime p ==> FiniteField (ZN p)``,
Theorem ZN_finite_field[allow_rebind]:
!p. prime p ==> FiniteField (ZN p)
Proof
rpt strip_tac >>
(REVERSE (irule finite_field_from_finite_ring >> rpt conj_tac) >> simp[ZN_property]) >-
metis_tac[NOT_PRIME_1, ONE_NOT_ZERO] >-
rw[ZN_finite_ring, PRIME_POS] >>
rw[EQ_IMP_THM] >-
metis_tac[EUCLID_LEMMA, LESS_MOD] >-
rw[] >>
rw[]);
rw[]
QED

(* Theorem: prime p <=> FiniteField (ZN p) *)
(* Proof:
Expand Down
19 changes: 0 additions & 19 deletions examples/algebra/field/fieldMapScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -2265,25 +2265,6 @@ Proof
rw[field_nonzero_eq, field_mult_rinv, field_mult_linv]
QED

(* Theorem: Field r /\ INJ f R univ(:'b) ==> Field (ring_inj_image r f) *)
(* Proof:
By Field_def, this is to show:
(1) Ring (ring_inj_image r f), true by ring_inj_image_ring
(2) Group ((ring_inj_image r f).prod excluding (ring_inj_image r f).sum.id)
Since (ring_inj_image r f).sum.id = f #0 by ring_inj_image_def
The result follows by field_inj_image_prod_nonzero_group
*)
Theorem field_inj_image_field:
!(r:'a field) f. Field r /\ INJ f R univ(:'b) ==> Field (ring_inj_image r f)
Proof
rpt strip_tac >>
rw[Field_def] >-
rw[ring_inj_image_ring] >>
`(ring_inj_image r f).sum.id = f #0` by rw[ring_inj_image_def] >>
rw[field_inj_image_prod_nonzero_group]
QED
(* Another proof of a previous theorem. *)

(* Theorem: Field r /\ INJ f R univ(:'b) ==> FieldHomo f r (ring_inj_image r f) *)
(* Proof: by ring_inj_image_ring_homo, field_is_ring *)
Theorem field_inj_image_field_homo:
Expand Down
Loading

0 comments on commit b6d5e58

Please sign in to comment.