Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sync main #67

Merged
merged 6 commits into from
Jan 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 18 additions & 51 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,75 +61,42 @@ GenET was developed for anyone interested in the field of genome editing. Especi

## Example: Prediction of prime editing efficiency by DeepPrime
![](docs/en/assets/contents/en_1_4_1_DeepPrime_architecture.svg)
DeepPrime is a prediction model for evaluating prime editing guideRNAs (pegRNAs) that target specific target sites for prime editing ([Yu et al. Cell 2023](https://doi.org/10.1016/j.cell.2023.03.034)). DeepSpCas9 prediction score is calculated simultaneously and requires tensorflow (version >=2.6). DeepPrime was developed on pytorch.
DeepPrime is a prediction model for evaluating prime editing guideRNAs (pegRNAs) that target specific target sites for prime editing ([Yu et al. Cell 2023](https://doi.org/10.1016/j.cell.2023.03.034)). DeepSpCas9 prediction score is calculated simultaneously and requires tensorflow (version >=2.6). DeepPrime was developed on pytorch. For more details, please see the [documentation](https://goosang-yu.github.io/genet/).

```python
from genet.predict import DeepPrime

seq_wt = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'
seq_ed = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'

pegrna = DeepPrime('Test', seq_wt, seq_ed, edit_type='sub', edit_len=1)
pegrna = DeepPrime('SampleName', seq_wt, seq_ed, edit_type='sub', edit_len=1)

# check designed pegRNAs
>>> pegrna.features
>>> pegrna.features.head()
```

| | ID | WT74_On | Edited74_On | PBSlen | RTlen | RT-PBSlen | Edit_pos | Edit_len | RHA_len | type_sub | type_ins | type_del | Tm1 | Tm2 | Tm2new | Tm3 | Tm4 | TmD | nGCcnt1 | nGCcnt2 | nGCcnt3 | fGCcont1 | fGCcont2 | fGCcont3 | MFE3 | MFE4 | DeepSpCas9_score |
| - | ---- | -------------------------------------------------------------------------- | -------------------------------------------------------------------------- | ------ | ----- | --------- | -------- | -------- | ------- | -------- | -------- | -------- | -------- | ------- | ------- | --------- | -------- | --------- | ------- | ------- | ------- | -------- | -------- | -------- | ------ | ----- | ---------------- |
| 0 | Test | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG | xxxxxxxxxxxxxxCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx | 7 | 35 | 42 | 34 | 1 | 1 | 1 | 0 | 0 | 16.19097 | 62.1654 | 62.1654 | \-277.939 | 58.22525 | \-340.105 | 5 | 16 | 21 | 71.42857 | 45.71429 | 50 | \-10.4 | \-0.6 | 45.96754 |
| 1 | Test | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG | xxxxxxxxxxxxxCCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx | 8 | 35 | 43 | 34 | 1 | 1 | 1 | 0 | 0 | 30.19954 | 62.1654 | 62.1654 | \-277.939 | 58.22525 | \-340.105 | 6 | 16 | 22 | 75 | 45.71429 | 51.16279 | \-10.4 | \-0.6 | 45.96754 |
| 2 | Test | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG | xxxxxxxxxxxxACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx | 9 | 35 | 44 | 34 | 1 | 1 | 1 | 0 | 0 | 33.78395 | 62.1654 | 62.1654 | \-277.939 | 58.22525 | \-340.105 | 6 | 16 | 22 | 66.66667 | 45.71429 | 50 | \-10.4 | \-0.6 | 45.96754 |
| 3 | Test | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG | xxxxxxxxxxxCACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx | 10 | 35 | 45 | 34 | 1 | 1 | 1 | 0 | 0 | 38.51415 | 62.1654 | 62.1654 | \-277.939 | 58.22525 | \-340.105 | 7 | 16 | 23 | 70 | 45.71429 | 51.11111 | \-10.4 | \-0.6 | 45.96754 |
| 4 | Test | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG | xxxxxxxxxxACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx | 11 | 35 | 46 | 34 | 1 | 1 | 1 | 0 | 0 | 40.87411 | 62.1654 | 62.1654 | \-277.939 | 58.22525 | \-340.105 | 7 | 16 | 23 | 63.63636 | 45.71429 | 50 | \-10.4 | \-0.6 | 45.96754 |
| 5 | Test | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG | xxxxxxxxxAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx | 12 | 35 | 47 | 34 | 1 | 1 | 1 | 0 | 0 | 40.07098 | 62.1654 | 62.1654 | \-277.939 | 58.22525 | \-340.105 | 7 | 16 | 23 | 58.33333 | 45.71429 | 48.93617 | \-10.4 | \-0.6 | 45.96754 |
| | ID | Spacer | RT-PBS | PBS_len | RTT_len | RT-PBS_len | Edit_pos | Edit_len | RHA_len | Target | ... | deltaTm_Tm4-Tm2 | GC_count_PBS | GC_count_RTT | GC_count_RT-PBS | GC_contents_PBS | GC_contents_RTT | GC_contents_RT-PBS | MFE_RT-PBS-polyT | MFE_Spacer | DeepSpCas9_score |
| --- | ---- | -------------------- | ------------------------------------------------- | ------- | ------- | ---------- | -------- | -------- | ------- | ------------------------------------------------- | --- | --------------- | ------------ | ------------ | --------------- | --------------- | --------------- | ------------------ | ---------------- | ---------- | ---------------- |
| 0 | SampleName | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGG | 7 | 35 | 42 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ... | \-340.105 | 5 | 16 | 21 | 71.42857 | 45.71429 | 50 | \-10.4 | \-0.6 | 45.96754 |
| 1 | SampleName | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGG | 8 | 35 | 43 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ... | \-340.105 | 6 | 16 | 22 | 75 | 45.71429 | 51.16279 | \-10.4 | \-0.6 | 45.96754 |
| 2 | SampleName | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGT | 9 | 35 | 44 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ... | \-340.105 | 6 | 16 | 22 | 66.66667 | 45.71429 | 50 | \-10.4 | \-0.6 | 45.96754 |
| 3 | SampleName | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTG | 10 | 35 | 45 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ... | \-340.105 | 7 | 16 | 23 | 70 | 45.71429 | 51.11111 | \-10.4 | \-0.6 | 45.96754 |
| 4 | SampleName | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTGT | 11 | 35 | 46 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ... | \-340.105 | 7 | 16 | 23 | 63.63636 | 45.71429 | 50 | \-10.4 | \-0.6 | 45.96754 |


Next, select model PE system and run DeepPrime
```python
pe2max_output = pegrna.predict(pe_system='PE2max', cell_type='HEK293T')

>>> pe2max_output.head()
```
| | Target | Spacer | RT-PBS | PBSlen | RTlen | RT-PBSlen | Edit_pos | Edit_len | RHA_len | PE2max_score |
| - | ------------------------------------------------- | ------------------------------ | ---------------------------------------------- | ------ | ----- | --------- | -------- | -------- | ------- | ------------ |
| 0 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGG | 7 | 35 | 42 | 34 | 1 | 1 | 0.904907 |
| 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGG | 8 | 35 | 43 | 34 | 1 | 1 | 2.377118 |
| 2 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGT | 9 | 35 | 44 | 34 | 1 | 1 | 2.613841 |
| 3 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTG | 10 | 35 | 45 | 34 | 1 | 1 | 3.643573 |
| 4 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTGT | 11 | 35 | 46 | 34 | 1 | 1 | 3.770234 |


The previous function, ```pe_score()```, is still available for use. However, please note that this function will be deprecated in the near future.
```python
from genet import predict as prd

# Place WT sequence and Edited sequence information, respectively.
# And select the edit type you want to make and put it in.
#Input seq: 60bp 5' context + 1bp center + 60bp 3' context (total 121bp)

seq_wt = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'
seq_ed = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT'
alt_type = 'sub1'

df_pe = prd.pe_score(seq_wt, seq_ed, alt_type)
df_pe.head()
```
| | Target | Spacer | RT-PBS | PBSlen | RTlen | RT-PBSlen | Edit_pos | Edit_len | RHA_len | PE2max_score |
| - | ------------------------------------------------- | ------------------------------ | ---------------------------------------------- | ------ | ----- | --------- | -------- | -------- | ------- | ------------ |
| 0 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGG | 7 | 35 | 42 | 34 | 1 | 1 | 0.904907 |
| 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGG | 8 | 35 | 43 | 34 | 1 | 1 | 2.377118 |
| 2 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGT | 9 | 35 | 44 | 34 | 1 | 1 | 2.613841 |
| 3 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTG | 10 | 35 | 45 | 34 | 1 | 1 | 3.643573 |
| 4 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTGT | 11 | 35 | 46 | 34 | 1 | 1 | 3.770234 |



It is also possible to predict other cell lines (A549, DLD1...) and PE systems (PE2max, PE4max...).

```python
df_pe = prd.pe_score(seq_wt, seq_ed, alt_type, sID='MyGene', pe_system='PE4max', cell_type='A549')
```

| | ID | PE2max_score | Spacer | RT-PBS | PBS_len | RTT_len | RT-PBS_len | Edit_pos | Edit_len | RHA_len | Target |
| - | ---- | ------------ | -------------------- | ---------------------------------------------- | ------- | ------- | ---------- | -------- | -------- | ------- | ------------------------------------------------- |
| 0 | SampleName | 0.904387 | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGG | 7 | 35 | 42 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... |
| 1 | SampleName | 2.375938 | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGG | 8 | 35 | 43 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... |
| 2 | SampleName | 2.61238 | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGT | 9 | 35 | 44 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... |
| 3 | SampleName | 3.641537 | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTG | 10 | 35 | 45 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... |
| 4 | SampleName | 3.768321 | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTGT | 11 | 35 | 46 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... |


Please send all comments and questions to [email protected]
Loading
Loading