Skip to content

Gitinc/Machine-Learning-1

 
 

Repository files navigation

Machine-Learning-1.x WS2021/22

Machine Learning 1.x at TU Berlin with seminar "Classical Topics in Machine Learning".

Trainers Klaus-Robert Müller
Grégoire Montavon
ISIS https://isis.tu-berlin.de/course/view.php?id=26470

Topics

The scheduled topics are:

  • Bayesian ML
    • Bayes Decision Theory
    • Maximum Likelihood Estimation and Bayes Parameter Estimation
  • Analyses
    • Principal Component Analysis
    • Linear Discriminant Analysis
  • Machine Learning Theory
    • Model Selection and Bias/Variance Tradeoff
    • VC Dimension and Kernels
  • Classification and Regression
    • Support Vector Machines
    • Decision Trees & Random Forests
    • Boosting
    • Kernel Ridge Regression
    • Neural Networks and Backpropagation
  • Latent Variable Models
    • k-means Clustering
    • Expectation Maximization
    • Restricted Boltzmann Machines

About

Machine Learning 1.x

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.7%
  • Python 0.3%