Skip to content

GirishBhutiya/benthos-unifact

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

benthos-umh

License: Apache 2.0 GitHub Actions FOSSA Status

Welcome to the benthos-umh repository! This is a version of benthos maintained by the United Manufacturing Hub (UMH) to provide seamless shopfloor integration with the Unified Namespace (MQTT/Kafka). Our goal is to enhance the integration of IT and OT tools for engineers while avoiding vendor lock-in and streamlining data management processes.

Description

benthos-umh is a Docker container designed to facilitate seamless shopfloor integration with the Unified Namespace (MQTT/Kafka). It is part of the United Manufacturing Hub project and offers the following features:

  • Simple deployment in Docker, docker-compose, and Kubernetes
  • Can connect to an OPC-UA server, browses selected nodes, and forwards all sub-nodes in 1-second intervals
  • Can connect to an S7 server, and read pre-defined addresses from it
  • Supports a wide range of outputs, from the Unified Namespace (MQTT and Kafka) to HTTP, AMQP, Redis, NATS, SQL, MongoDB, Cassandra, or AWS S3. Check out the official benthos output library
  • Fully customizable messages using the benthos processor library: implement Report-by-Exception (RBE) / message deduplication, modify payloads and add timestamps using bloblang, apply protobuf (and therefore SparkplugB), and explore many more options
  • Integrates with modern IT landscape, providing metrics, logging, tracing, versionable configuration, and more
  • Entirely open-source (Apache 2.0) and free-to-use

We encourage you to try out benthos-umh and explore the broader United Manufacturing Hub project for a comprehensive solution to your industrial data integration needs.

Usage

Standalone

To use benthos-umh in standalone mode with Docker, follow the instructions below (using OPC UA as an exampke).

  1. Create a new file called benthos.yaml with the provided content

    ---
    input:
      opcua:
        endpoint: 'opc.tcp://localhost:46010'
        nodeIDs: ['ns=2;s=IoTSensors']
    
    pipeline:
      processors:
        - bloblang: |
            root = {
              meta("opcua_path"): this,
              "timestamp_ms": (timestamp_unix_nano() / 1000000).floor()
            }
    
    output:
      mqtt:
        urls:
          - 'localhost:1883'
        topic: 'ia/raw/opcuasimulator/${! meta("opcua_path") }'
        client_id: 'benthos-umh'
  2. Execute the docker run command to start a new benthos-umh container docker run --rm --network="host" -v '<absolute path to your file>/benthos.yaml:/benthos.yaml' ghcr.io/united-manufacturing-hub/benthos-umh:latest

With the United Manufacturing Hub (Kubernetes & Kafka)

To deploy benthos-umh with the United Manufacturing Hub and its OPC-UA simulator, use the provided Kubernetes manifests in UMHLens/OpenLens.

apiVersion: v1
kind: ConfigMap
metadata:
  name: benthos-1-config
  namespace: united-manufacturing-hub
  labels:
    app: benthos-1
data:
  benthos.yaml: |-
    input:
      umh_input_opcuasimulator: {}
    pipeline:
      processors:
        - bloblang: |
            root = {
              meta("opcua_path"): this,
              "timestamp_ms": (timestamp_unix_nano() / 1000000).floor()
            }
    output:
      umh_output:
        topic: 'ia.raw.${! meta("opcua_path") }'
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: benthos-1-deployment
  namespace: united-manufacturing-hub
  labels:
    app: benthos-1
spec:
  replicas: 1
  selector:
    matchLabels:
      app: benthos-1
  template:
    metadata:
      labels:
        app: benthos-1
    spec:
      containers:
        - name: benthos-1
          image: "ghcr.io/united-manufacturing-hub/benthos-umh:latest"
          imagePullPolicy: IfNotPresent
          ports:
            - name: http
              containerPort: 4195
              protocol: TCP
          livenessProbe:
            httpGet:
              path: /ping
              port: http
          readinessProbe:
            httpGet:
              path: /ready
              port: http
          volumeMounts:
            - name: config
              mountPath: "/benthos.yaml"
              subPath: "benthos.yaml"
              readOnly: true
      volumes:
        - name: config
          configMap:
            name: benthos-1-config

OPC UA

The plugin is designed to browse and subscribe to all child nodes within a folder for each configured NodeID, provided that the NodeID represents a folder. It features a recursion depth of up to 10 levels, enabling thorough exploration of nested folder structures. The browsing specifically targets nodes organized under the OPC UA 'Organizes' relationship type, intentionally excluding nodes under 'HasProperty' and 'HasComponent' relationships. Additionally, the plugin does not browse Objects represented by red, blue, or green cube icons in UAExpert.

Subscriptions are selectively managed, with tags having a DataType of null being excluded from subscription. Also, by default, the plugin does not subscribe to the properties of a tag, such as minimum and maximum values.

Datatypes

The plugin has been rigorously tested with an array of datatypes, both as single values and as arrays. The following datatypes have been verified for compatibility:

  • Boolean
  • Byte
  • DateTime
  • Double
  • Enumeration
  • ExpandedNodeId
  • Float
  • Guid
  • Int16
  • Int32
  • Int64
  • Integer
  • LocalizedText
  • NodeId
  • Number
  • QualifiedName
  • SByte
  • StatusCode
  • String
  • UInt16
  • UInt32
  • UInt64
  • UInteger
  • ByteArray
  • ByteString
  • Duration
  • LocaleId
  • UtcTime
  • Variant
  • XmlElement

There are specific datatypes which are currently not supported by the plugin and attempting to use them will result in errors. These include:

  • Two-dimensional arrays
  • UA Extension Objects
  • Variant arrays (Arrays with multiple different datatypes)

Authentication and Security

In benthos-umh, security and authentication are designed to be as robust as possible while maintaining flexibility. The software automates the process of selecting the highest level of security offered by an OPC-UA server for the selected Authentication Method, but the user can specify their own Security Policy / Security Mode if they want (see further below at Configuration options)

Supported Authentication Methods
  • Anonymous: No extra information is needed. The connection uses the highest security level available for anonymous connections.
  • Username and Password: Specify the username and password in the configuration. The client opts for the highest security level that supports these credentials.
  • Certificate (Future Release): Certificate-based authentication is planned for future releases.

Metadata outputs

The plugin provides metadata for each message, that can be used to create a topic for the output, as shown in the example above. The metadata can also be used to create a unique identifier for each message, which is useful for deduplication.

Metadata Description
opcua_path The sanitized ID of the Node that sent the message. This is always unique between nodes
opcua_parent_path The sanitized ID of the Node defined in the input. This is useful if the given node is a folder, and the plugin is browsing all child nodes. If the node is not a folder, the value is equal to opcua_path
opcua_tag_path A dot-separated path to the tag, excluding the parent path, created by joining the BrowseNames. This is useful for creating a key name in the processor nicer than the output of opcua_path

Taking as example the following OPC-UA structure:

Root
└── ns=2;s=FolderNode
    ├── ns=2;s=Tag1
    ├── ns=2;s=Tag2
    └── ns=2;s=SubFolder
        ├── ns=2;s=Tag3
        └── ns=2;s=Tag4

Subscribing to ns=2;s=FolderNode would result in the following metadata:

opcua_path opcua_parent_path opcua_tag_path
ns_2_s_FolderNode.Tag1 ns_2_s_FolderNode Tag1
ns_2_s_FolderNode.Tag1 ns_2_s_FolderNode Tag2
ns_2_s_FolderNode.SubFolder.Tag3 ns_2_s_FolderNode SubFolder.Tag3
ns_2_s_FolderNode.SubFolder.Tag4 ns_2_s_FolderNode SubFolder.Tag4

Note that the value of opcua_path actually depends on the specific node ID of the tag, and the value of opcua_tag_path is created by joining the BrowseNames of the nodes.

Configuration Options

The following options can be specified in the benthos.yaml configuration file:

input:
  opcua:
    endpoint: 'opc.tcp://localhost:46010'
    nodeIDs: ['ns=2;s=IoTSensors']
    username: 'your-username'  # optional (default: unset)
    password: 'your-password'  # optional (default: unset)
    insecure: false | true # optional (default: false)
    securityMode: None | Sign | SignAndEncrypt # optional (default: unset)
    securityPolicy: None | Basic256Sha256 | Aes256Sha256RsaPss | Aes128Sha256RsaOaep # optional (default: unset)
    subscribeEnabled: false | true # optional (default: false)
Endpoint

You can specify the endpoint in the configuration file. Node endpoints are automatically discovered and selected based on the authentication method.

input:
  opcua:
    endpoint: 'opc.tcp://localhost:46010'
    nodeIDs: ['ns=2;s=IoTSensors']
Node IDs

You can specify the node IDs in the configuration file (currently only namespaced node IDs are supported):

input:
  opcua:
    endpoint: 'opc.tcp://localhost:46010'
    nodeIDs: ['ns=2;s=IoTSensors']
Username and Password

If you want to use username and password authentication, you can specify them in the configuration file:

input:
  opcua:
    endpoint: 'opc.tcp://localhost:46010'
    nodeIDs: ['ns=2;s=IoTSensors']
    username: 'your-username'
    password: 'your-password'
Security Mode and Security Policy

Security Mode: This defines the level of security applied to the messages. The options are:

  • None: No security is applied; messages are neither signed nor encrypted.
  • Sign: Messages are signed for integrity and authenticity but not encrypted.
  • SignAndEncrypt: Provides the highest security level where messages are both signed and encrypted.

Security Policy: Specifies the set of cryptographic algorithms used for securing messages. This includes algorithms for encryption, decryption, and signing of messages. Some common policies include Basic256Sha256, Aes256Sha256RsaPss, and Aes128Sha256RsaOaep.

While the security mode and policy are automatically selected based on the endpoint and authentication method, you have the option to override this by specifying them in the configuration file:

input:
  opcua:
    endpoint: 'opc.tcp://localhost:46010'
    nodeIDs: ['ns=2;s=IoTSensors']
    securityMode: SignAndEncrypt
    securityPolicy: Basic256Sha256
Insecure Mode

Setting this to true will overwrite any configured securityMode and securityPolicy!

If the most secure endpoint selected by benthos-umh is not working or the server's security implementation is lacking, you can bypass encryption by setting insecure: true. This will use the Security Mode "None".

input:
  opcua:
    endpoint: 'opc.tcp://localhost:46010'
    nodeIDs: ['ns=2;s=IoTSensors']
    insecure: true
Pull and Subscribe Methods

Benthos-umh supports two modes of operation: pull and subscribe. In pull mode, it pulls all nodes every second, regardless of changes. In subscribe mode, it only sends data when there's a change in value, reducing unnecessary data transfer.

Method Advantages Disadvantages
Pull - Provides real-time data visibility, e.g., in MQTT Explorer.
- Clearly differentiates between 'no data received' and 'value did not change' scenarios, which can be crucial for documentation and proving the OPC-UA client's activity.
- Results in higher data throughput as it pulls all nodes every second, regardless of changes.
Subscribe - Data is sent only when there's a change in value, reducing unnecessary data transfer. - Less visibility into real-time data status, and it's harder to differentiate between no data and unchanged values.
input:
  opcua:
    endpoint: 'opc.tcp://localhost:46010'
    nodeIDs: ['ns=2;s=IoTSensors']
    subscribeEnabled: true

S7comm

This input is tailored for the S7 communication protocol, facilitating a direct connection with S7-300, S7-400, S7-1200, and S7-1500 series PLCs.

For more modern PLCs like the S7-1200 and S7-1500 the following two changes need to be done to use them:

  1. "Optimized block access" must be disabled for the DBs we want to access
  2. In the "Protection" section of the CPU Properties, enable the "Permit access with PUT/GET" checkbox

Configuration

input:
  s7comm:
    tcpDevice: '192.168.0.1' # IP address of the S7 PLC
    rack: 0                  # Rack number of the PLC. Defaults to 0
    slot: 1                  # Slot number of the PLC. Defaults to 1
    batchMaxSize: 480         # Maximum number of addresses per batch request. Defaults to 480
    timeout: 10             # Timeout in seconds for connections and requests. Default to 10
    addresses:               # List of addresses to read from
      - "DB1.DW20"     # Accesses a double word at location 20 in data block 1
      - "DB1.S30.10"   # Accesses a 10-byte string at location 30 in data block 1

Configuration Parameters

  • tcpDevice: IP address of the Siemens S7 PLC.
  • rack: Identifies the physical location of the CPU within the PLC rack.
  • slot: Identifies the specific CPU slot within the rack.
  • batchMaxSize: Maximum count of addresses bundled in a single batch request. This affects the PDU size.
  • timeout: Timeout duration in milliseconds for connection attempts and read requests.
  • addresses: Specifies the list of addresses to read. The format for addresses is <area>.<type><address>[.extra], where:
    • area: Specifies the direct area access, e.g., "DB1" for data block one. Supported areas include inputs (PE), outputs (PA), Merkers (MK), DB (DB), counters (C), and timers (T).
    • type: Indicates the data type, such as bit (X), byte (B), word (W), double word (DW), integer (I), double integer (DI), real (R), date-time (DT), and string (S). Some types require an 'extra' parameter, e.g., the bit number for X or the maximum length for S.

Output

Similar to the OPC UA input, this outputs for each address a single message with the payload being the value that was read. To distinguish messages, you can use meta("s7_address") in a following benthos bloblang processor.

Testing

We execute automated tests and verify that benthos-umh works:

  • (WAGO PFC100, 750-8101, OPC UA) Connect Anonymously
  • (WAGO PFC100, 750-8101, OPC UA) Connect Username / Password
  • (WAGO PFC100, 750-8101, OPC UA) Connect and get one float number

These tests are executed with a local github runner called "hercules", which is connected to a isolated testing network.

Development

Quickstart

Follow the steps below to set up your development environment and run tests:

git clone https://github.com/united-manufacturing-hub/benthos-umh.git
cd serverless-stack
nvm install
npm install
sudo apt-get install zip
echo 'deb [trusted=yes] https://repo.goreleaser.com/apt/ /' | sudo tee /etc/apt/sources.list.d/goreleaser.list
sudo apt update
sudo apt install goreleaser
make
npm test

Additional Checks and Commands

Gitpod and Tailscale

By default when opening the repo in Gitpod, everything that you need should start automatically. If you want to connect to our local PLCs in our office, you can use tailscale, which you will be prompted to install. See also: https://www.gitpod.io/docs/integrations/tailscale

For Go Code

  1. Linting: Run make lint to check for linting errors. If any are found, you can automatically fix them by running make format.

  2. Unit Tests: Run make test to execute all Go unit tests.

For Other Code Types (Including Config Files)

  1. Benthos Tests: Use npm run test to run all Benthos tests for configuration files. Note: We currently do not have these tests. Learn more.

  2. Linting: Run npm run lint to check all files, including YAML files, for linting errors. To automatically fix these errors, run npm run format.

MQTT subcription plugin yaml file input config.

For the set subscription topic,

Please use the below format to subscribe and publish to MQTT.

{"1": [{"topic":"pressure", "outputtopic":"caltemprature"}]}

Topic: This topic will be subscribed to and checked for value changes. If there is any change in this topic, then it will be published to MQTT with 'outputtopic'. Output Topic: A MQTT message will be published in this topic if there are any changes in the subscribed MQTT topic (which is privded in the 'topic').

For Subtopics

We can also subscribe to multiple subtopics with #, and below is an example of that.

{"1": [{"topic":"ia/raw/opcua/#", "outputtopic":"caltemprature"}]}

Topic: In this format, we will subscribe to all subtopics that are under 'ia/raw/opcua/' like 'ia/raw/opcua/temparature', 'ia/raw/opcua/pressure', etc. outputtopic: In this subtopic format, the output topic will be "topic/outputtopic", so in the above example, the output topic will be 'temparature/caltemprature', 'pressure/caltemprature'.

For set tSubscription,

Please use the below format to subscribe to tSubscriptions.

'{"1": [{"topic":"caljson", "elements": "element1,element2"},{"topic":"caljson1", "elements": "element3,element4"}]}'

Topic: provided topics will be subsribed like caljson, caljson1 and the above format is dynamic; you can add more topics in the above JSON array. Elements: a comma-separated list of all elements that you want in the output from that topic, like element1, element2 will be from caljson topic, and element3 and element4 will be from caljson1 topic.

So the output of both of these is: All elements from subcription topic (pressure) + element1, element2 from caljson + element3, element4 from caljson1

Below is the example JSON.

{
"temparature": "123456",
"db": "mysql",
"element1": "1234",
"element2": "string data",
"element3": "another data",
"element4": "567890",
"timestamp_ms":1711631870112
}

License

All source code is distributed under the APACHE LICENSE, VERSION 2.0. See LICENSE for more information.

FOSSA Status

Contact

Feel free to provide us feedback on our Discord channel.

For more information about the United Manufacturing Hub, visit UMH Systems GmbH. If you haven't worked with the United Manufacturing Hub before, give it a try! Setting it up takes only a matter of minutes.

benthos-unifact

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published