Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] Unit testing #11

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 71 additions & 0 deletions testing/test_bit_sequence.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
import lightning as L
import pytest
import torch

from chunkgfn.datamodules.bit_sequence import BitSequenceModule


@pytest.mark.parametrize("num_modes", [60, 120, 240])
@pytest.mark.parametrize("oracle_difficulty", ["medium", "hard"])
@pytest.mark.parametrize("max_len", [32, 64, 128])
@pytest.mark.parametrize("seed", [42, 2024, 7, 1234])
def test_length_of_modes(
num_modes: int, oracle_difficulty: str, max_len: int, seed: int
):
L.seed_everything(seed, workers=True)
env = BitSequenceModule(
max_len=max_len,
num_modes=num_modes,
num_train_iterations=1000,
num_val_iterations=100,
num_test_iterations=100,
threshold=0.9,
oracle_difficulty=oracle_difficulty,
batch_size=64,
sample_exact_length=True,
)
assert (
len(env.modes) == num_modes
), f"The number of modes is not correct. You asked for {num_modes} modes, but got {len(env.modes)} modes."


@pytest.mark.parametrize("max_len", [32, 64, 128])
@pytest.mark.parametrize("seed", [42, 2024, 7, 1234])
def test_invalid_actions_mask_exact_length(seed: int, max_len: int):
L.seed_everything(seed, workers=True)
env = BitSequenceModule(
max_len=max_len,
num_modes=60,
num_train_iterations=1000,
num_val_iterations=100,
num_test_iterations=100,
threshold=0.9,
oracle_difficulty="medium",
batch_size=64,
sample_exact_length=True,
)
s0 = env.s0.unsqueeze(0)
mask = env.get_invalid_actions_mask(s0)
assert (
tuple(mask.shape) == (s0.shape[0], len(env.actions))
), f"Invalid mask shape is not correct. Expected {(s0.shape[0], len(env.actions))} but got {tuple(mask.shape)}."
expected_mask = torch.ones(len(env.actions))
expected_mask[0] = 0
expected_mask = expected_mask.unsqueeze(0)
assert torch.all(
mask == expected_mask
), "Invalid mask is not correct. The <EOS> should not be allowed."

# Test for a state that is full
idx = torch.randint(1, len(env.atomic_tokens), (64, max_len + 1))
state = torch.zeros(64, max_len + 1, len(env.atomic_tokens)).scatter_(
2, idx.unsqueeze(-1), 1
)
state[:, -1] = env.padding_token
mask = env.get_invalid_actions_mask(state)
expected_mask = torch.ones(len(env.actions))
expected_mask[1:] = 0
expected_mask = expected_mask.unsqueeze(0)
assert torch.all(
mask == expected_mask
), "Invalid mask is not correct. Only <EOS> token should be allowed."