1.1 Intro to Python | ||
1.2 Pandas | ||
1.3 Exercise 📝 Send responses | ||
1.4 Solution |
2.1 EDA theory | ||
2.2 EDA theory 2 | ||
2.3 Exercise | ||
2.4 Exercise solution |
3.1 Linear Regression | ||
3.2 Logistic Regression | ||
3.3 Logistic Regression NLP | ||
3.4 Regularization | ||
3.5 Polynomial regression |
4.1 EDA | ||
4.2 Decission Tree | ||
4.3 Random Forest | ||
4.4 Gradient Boosting | ||
4.5 Neural Network |
5.1 Dimensionality Reduction | ||
5.2 Clustering |
6.1 Beautiful Soup |
7.1 BOW + Logistic Regression | ||
7.2 TF-IDF, N-Grams | ||
7.3 Embeddings | ||
7.4 RNN with Keras |
8.1 TimeSeries with Prophet 1 | ||
8.2 TimeSeries with Prophet 2 | ||
8.3 Ejercicio en Kaggle |
🖼️9. Image |
9.1 Clasification with Fast.ai | |
---|---|---|
9.2 Segmentation with Fast.ai |
10.1 Process Mining con PM4PY | ||
10.2 Process Mining con BupaR |
🗄️EXTRA |
Efficient Pandas (H20 datatable, reduce memory...) |
---|---|
Big data (Distributed ML, Pyspark) | |
GPU ML (RAPIDS, cuDF, cuML) | |
ML in production (API,etc) | |
Sonido (clasificacion, clasificacion temporal, separar fuentes) |
- Mlcourse.ai (advanced)
- Kaggle learn (easy)
- Fast.ai ML (easy)