Skip to content

Commit

Permalink
finished proof
Browse files Browse the repository at this point in the history
  • Loading branch information
MirceaS committed Sep 13, 2024
1 parent 5ebf6d3 commit cf142e6
Show file tree
Hide file tree
Showing 7 changed files with 470 additions and 178 deletions.
9 changes: 9 additions & 0 deletions 01-propositional.mm1
Original file line number Diff line number Diff line change
Expand Up @@ -773,3 +773,12 @@ theorem iand4 (h1: $ aa -> bb $) (h2: $ aa -> c $) (h3: $ aa -> d $) (h4: $ aa -

theorem iand5 (h1: $ aa -> bb $) (h2: $ aa -> c $) (h3: $ aa -> d $) (h4: $ aa -> e $) (h5: $ aa -> f $): $ aa -> bb /\ c /\ d /\ e /\ f $ =
'(iand (iand (iand (iand h1 h2) h3) h4) h5);

theorem iand6 (h1: $ aa -> bb $) (h2: $ aa -> c $) (h3: $ aa -> d $) (h4: $ aa -> e $) (h5: $ aa -> f $) (h6: $ aa -> g $): $ aa -> bb /\ c /\ d /\ e /\ f /\ g $ =
'(iand (iand (iand (iand (iand h1 h2) h3) h4) h5) h6);

theorem iand7 (h1: $ aa -> bb $) (h2: $ aa -> c $) (h3: $ aa -> d $) (h4: $ aa -> e $) (h5: $ aa -> f $) (h6: $ aa -> g $) (h7: $ aa -> h $): $ aa -> bb /\ c /\ d /\ e /\ f /\ g /\ h $ =
'(iand (iand (iand (iand (iand (iand h1 h2) h3) h4) h5) h6) h7);

theorem imp_or_extract: $ (aa -> bb) \/ (aa -> c) <-> (aa -> (bb \/ c)) $ =
'(ibii (eori (imim2 orl) (imim2 orr)) imp_or_split);
15 changes: 15 additions & 0 deletions 10-theory-definedness.mm0
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,21 @@ def is_func {.x: EVar} (phi: Pattern): Pattern = $ exists x (eVar x == phi) $;

def is_pred (phi: Pattern): Pattern = $ (phi == bot) \/ (phi == top) $;

--- Domain Quantifiers
----------------------

def exists_in {x: EVar} (phi psi: Pattern x): Pattern = $ exists x ((eVar x C= phi) /\ psi) $;
notation exists_in {x: EVar} (phi psi: Pattern x): Pattern = ($E$:0) x ($:$:0) phi ($.$:0) psi;

def forall_in {x: EVar} (phi psi: Pattern x): Pattern = $ forall x ((eVar x C= phi) -> psi) $;
notation forall_in {x: EVar} (phi psi: Pattern x): Pattern = ($A$:0) x ($:$:0) phi ($.$:0) psi;


def is_sorted_pred (phi psi: Pattern): Pattern = $ (psi == bot) \/ (psi == phi) $;

def is_sorted_func {.x: EVar} (phi psi: Pattern): Pattern = $ E x : phi . eVar x == psi $;


--- Contextual Implications
---------------------------

Expand Down
67 changes: 65 additions & 2 deletions 12-proof-system-p.mm1
Original file line number Diff line number Diff line change
Expand Up @@ -365,6 +365,10 @@ theorem subset_imp_or_subset_r:
theorem subset_and: $ (phi C= (psi1 /\ psi2)) -> (phi C= psi1) /\ (phi C= psi2) $ =
'(iand (framing_subset id anl) (framing_subset id anr));

theorem and_subset: $ (phi1 C= psi) /\ (phi2 C= psi) <-> (phi1 \/ phi2 C= psi) $ =
'(ibii (rsyl (anr propag_and_floor) @ framing_floor @ curry eor) @
iand (framing_floor @ imim1 orl) (framing_floor @ imim1 orr));

theorem taut_equiv_top (h: $ phi $): $ phi <-> top $ =
'(ibii imp_top @ a1i h);
theorem taut_and_equiv (h: $ phi $): $ phi /\ psi <-> psi $ =
Expand Down Expand Up @@ -1052,12 +1056,12 @@ theorem ceil_appCtx_dual (phi: Pattern) {box: SVar} (ctx: Pattern box):
$ |^ phi ^| -> ~ (app[ (~ (|^ phi ^|)) / box ] ctx) $ =
'(rsyl (anr floor_ceil_ceil) @ rsyl floor_appCtx_dual @ con3 @ framing @ con3 @ anl floor_ceil_ceil);

theorem ceil_imp_in_appCtx (phi psi: Pattern) {box: SVar} (ctx: Pattern box):
theorem floor_imp_in_appCtx (phi psi: Pattern) {box: SVar} (ctx: Pattern box):
$ (app[ |_ phi _| -> psi / box ] ctx) -> |_ phi _| -> app[ psi / box ] ctx $ =
'(exp @ rsyl (anim propag_or floor_appCtx_dual) @ rsyl (anl andir) @ eori (syl absurdum @ rsyl (anim1 @ framing notnot1) @ notnot1 notnot1) anl);

do {
(def (ceil_imp_in_appCtx_subst subst) '(norm (norm_imp ,subst @ norm_imp_r ,subst) ceil_imp_in_appCtx))
(def (floor_imp_in_appCtx_subst subst) '(norm (norm_imp ,subst @ norm_imp_r ,subst) floor_imp_in_appCtx))
};

theorem alpha_exists {x y: EVar} (phi: Pattern x y)
Expand Down Expand Up @@ -1291,6 +1295,21 @@ theorem ceil_is_pred: $ (|^ phi ^| == bot) \/ (|^ phi ^| == top) $ =
@ rsyl anr @ mpcom taut)
emr);

theorem floor_is_pred: $ (|_ phi _| == bot) \/ (|_ phi _| == top) $ =
'(orim
(anl
@ bitr (bicom @ cong_of_equiv_not @ ceil_floor_floor)
@ bitr not_ceil_floor_bi
@ cong_of_equiv_floor
@ ibii (iand id @ a1i absurdum)
anl)
(anl
@ bitr (bicom floor_idem)
@ cong_of_equiv_floor
@ ibii (iand (a1i imp_top) @ com12 @ a1i id)
@ rsyl anr @ mpcom taut)
emr);

theorem ceil_idempotency_for_pred (phi: Pattern): $ ((phi == bot) \/ (phi == top)) <-> (phi == |^ phi ^|) $ =
(named '(ibii
(eori
Expand Down Expand Up @@ -1543,3 +1562,47 @@ do {
[_ 'biid]
)
};

theorem is_pred_floor: $ (is_pred phi) <-> (phi == |_ phi _|) $ =
'(ibii
(rsyl (anl floor_of_floor_or) @ framing_floor @ eori (rsyl (rsyl corollary_57_floor anl) @ iand (imim2 absurdum) @ a1i corollary_57_floor) @ iand (rsyl ,(func_subst_explicit_helper 'x $ (eVar x) -> |_ eVar x _| $) @ rsyl anr @ mpcom @ a1i @ lemma_46_floor taut) @ a1i corollary_57_floor)
(rsyl ,(func_subst_explicit_helper 'x $((eVar x) == bot) \/ ((eVar x) == top)$) @ rsyl anr @ mpcom floor_is_pred));

theorem KT_imp {X: SVar} (ctx ante phi: Pattern X)
(pos: $ _Positive X ctx $)
(propag: $ (s[ ante -> phi / X ] ctx) -> ante -> s[ phi / X ] ctx $)
(h: $ ante -> (s[ phi / X ] ctx) -> phi $):
$ ante -> (mu X ctx) -> phi $ =
'(com12 @ KT pos @ rsyl propag (prop_2 h));

theorem KT_subset {X: SVar} (ctx phi: Pattern X)
(pos: $ _Positive X ctx $)
(propag: $ (s[ ((s[ phi / X ] ctx) C= phi) -> phi / X ] ctx) -> ((s[ phi / X ] ctx) C= phi) -> s[ phi / X ] ctx $):
$ ((s[ phi / X ] ctx) C= phi) -> ((mu X ctx) C= phi) $ =
'(rsyl (anr floor_idem) @ framing_floor @ KT_imp pos propag corollary_57_floor);

do {
(def (KT_subset_subst subst pos propag) '(norm (norm_imp_l @ norm_subset ,subst norm_refl) @ KT_subset ,pos @ norm (norm_sym @ norm_imp (norm_trans (norm_svSubst_pt norm_refl @ norm_imp_l @ norm_subset ,subst norm_refl) ,subst) @ norm_imp (norm_subset ,subst norm_refl) ,subst) ,propag))
};


theorem floor_extract_app
(h1: $ phi1 -> |_ psi _| -> rho1 $)
(h2: $ phi2 -> |_ psi _| -> rho2 $):
$ (app phi1 phi2) -> |_ psi _| -> app rho1 rho2 $ =
(named '(rsyl ,(framing_subst 'h1 'appCtxLVar) @ rsyl ,(floor_imp_in_appCtx_subst 'appCtxLVar) @ rsyl (imim2 (rsyl ,(framing_subst 'h2 'appCtxRVar) ,(floor_imp_in_appCtx_subst 'appCtxRVar))) imidm));

theorem floor_extract_or
(h1: $ phi1 -> |_ psi _| -> rho1 $)
(h2: $ phi2 -> |_ psi _| -> rho2 $):
$ phi1 \/ phi2 -> |_ psi _| -> rho1 \/ rho2 $ =
'(rsyl (orim h1 h2) @ anl imp_or_extract);

do {
(def (floor_extract x ctx) @ match ctx
[$eVar ,y$ (if (== x y) 'id 'prop_1)]
[$app ,phi1 ,phi2$ '(floor_extract_app ,(floor_extract x phi1) ,(floor_extract x phi2))]
[$or ,phi1 ,phi2$ '(floor_extract_or ,(floor_extract x phi1) ,(floor_extract x phi2))]
[_ 'prop_1]
)
};
46 changes: 41 additions & 5 deletions nominal/core.mm1
Original file line number Diff line number Diff line change
Expand Up @@ -13,12 +13,11 @@ axiom atoms_nominal_sorts: $ dom atoms C= dom nominal_sorts $;

term sort_abstraction_sym: Symbol;
def sort_abstraction (abs body: Pattern): Pattern = $ (sym sort_abstraction_sym) @@ abs @@ body $;
-- TODO: Check if output sort should be `sorts` or it's okay for it to be `nominal_sorts` (e,g, can we have something like `[a1] [a2] t`? The choice of `nominal_sorts` assumes yes)
axiom function_sort_abstraction: $ ,(is_function '(sym sort_abstraction_sym) '[atoms nominal_sorts] 'nominal_sorts) $;

def is_atom_sort (alpha: Pattern): Pattern = $ (is_func alpha) /\ (alpha C= dom atoms) $;
def is_nominal_sort (tau: Pattern): Pattern = $ (is_func tau) /\ (tau C= dom nominal_sorts) $;
def is_atom (a alpha: Pattern): Pattern = $ is_sorted_func alpha a $;
def is_atom (a alpha: Pattern): Pattern = $ is_sorted_func (dom alpha) a $;

axiom nominal_sorts_are_sorts: $ (is_nominal_sort phi) -> (is_sort phi) $;

Expand All @@ -29,6 +28,13 @@ def abstraction (phi rho: Pattern): Pattern = $ (sym abstraction_sym) @@ phi @@
term supp_sym: Symbol;
def supp (phi: Pattern): Pattern = $ (sym supp_sym) @@ phi $;
def fresh_for (phi psi: Pattern): Pattern = $ ~ (phi C= supp psi) $;
term comma_sym: Symbol;
def comma (phi psi: Pattern): Pattern = $ (sym comma_sym) @@ phi @@ psi $;
infixl comma: $,,$ prec 35;
term comma_sort_sym: Symbol;
def comma_sort: Pattern = $ sym comma_sort_sym $;

axiom comma_sort_nominal: $ is_nominal_sort comma_sort $;

def EV_pattern {.a .b: EVar} (alpha phi: Pattern): Pattern =
$ s_forall alpha a (s_forall alpha b ((swap (eVar a) (eVar b) phi) == phi)) $;
Expand All @@ -48,6 +54,10 @@ axiom multifunction_supp:
$ is_atom_sort alpha $ >
$ is_nominal_sort tau $ >
$ ,(is_multi_function '(sym supp_sym) '[tau] 'alpha) $;
axiom function_comma:
$ is_nominal_sort tau1 $ >
$ is_nominal_sort tau2 $ >
$ ,(is_function '(sym comma_sym) '[tau1 tau2] 'comma_sort) $;

axiom EV_abstraction {a b: EVar} (alpha tau: Pattern) (phi psi: Pattern a b):
$ is_atom_sort alpha $ >
Expand All @@ -56,14 +66,40 @@ axiom EV_abstraction {a b: EVar} (alpha tau: Pattern) (phi psi: Pattern a b):
(is_of_sort phi alpha) ->
(is_of_sort psi tau) ->
((swap (eVar a) (eVar b) (abstraction phi psi)) == abstraction (swap (eVar a) (eVar b) phi) (swap (eVar a) (eVar b) psi)))) $;
-- add EV axiom for swap
axiom EV_supp {a b: EVar} (tau: Pattern) (phi: Pattern a b):

axiom EV_swap {a b c d: EVar} (alpha tau: Pattern) (phi: Pattern a b c d):
$ is_atom_sort alpha $ >
$ is_nominal_sort tau $ >
$ s_forall alpha a (s_forall alpha b (s_forall alpha c (s_forall alpha d (
(is_of_sort phi alpha) ->
(is_of_sort psi tau) ->
((swap (eVar a) (eVar b) (swap (eVar c) (eVar d) phi)) == swap (swap (eVar a) (eVar b) (eVar c)) (swap (eVar a) (eVar b) (eVar d)) (swap (eVar a) (eVar b) phi)))))) $;

axiom EV_supp {a b: EVar} (alpha tau: Pattern) (phi: Pattern a b):
$ is_atom_sort alpha $ >
$ is_nominal_sort tau $ >
$ s_forall alpha a (s_forall alpha b (
(is_of_sort phi tau) ->
((swap (eVar a) (eVar b) (supp phi)) == supp (swap (eVar a) (eVar b) phi)))) $;

axiom EV_comma {a b: EVar} (alpha tau: Pattern) (phi1 phi2: Pattern a b):
$ is_atom_sort alpha $ >
$ is_nominal_sort tau $ >
$ s_forall alpha a (s_forall alpha b (
(is_of_sort phi1 tau) ->
(is_of_sort phi2 tau) ->
((swap (eVar a) (eVar b) (phi1 ,, phi2)) == ((swap (eVar a) (eVar b) phi1) ,, (swap (eVar a) (eVar b) phi2))))) $;

axiom fresh_comma {a: EVar} (alpha tau1 tau2: Pattern) (phi1 phi2: Pattern a):
$ is_atom_sort alpha $ >
$ is_nominal_sort tau1 $ >
$ is_nominal_sort tau2 $ >
$ s_forall alpha a (
(is_of_sort phi1 tau1) ->
(is_of_sort phi2 tau2) ->
(fresh_for (eVar a) (phi1 ,, phi2)) ->
(fresh_for (eVar a) phi1) /\ (fresh_for (eVar a) phi2)) $;

axiom EV_pred (alpha tau: Pattern):
$ is_atom_sort alpha $ >
$ is_nominal_sort tau $ >
Expand Down Expand Up @@ -110,7 +146,7 @@ axiom F3 {a b: EVar} (alpha1 alpha2: Pattern a b):
axiom F4 {a: EVar} (alpha tau phi: Pattern):
$ is_atom_sort alpha $ >
$ is_nominal_sort tau $ >
$ (is_sorted_func tau phi) ->
$ (is_sorted_func (dom tau) phi) ->
(s_exists alpha a (fresh_for (eVar a) phi)) $;
axiom A1 {a b: EVar} (alpha tau phi rho: Pattern a b):
$ is_atom_sort alpha $ >
Expand Down
Loading

0 comments on commit cf142e6

Please sign in to comment.