-
Notifications
You must be signed in to change notification settings - Fork 416
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #513 from 920232796/master
add aquila server huggingface
- Loading branch information
Showing
1 changed file
with
188 additions
and
0 deletions.
There are no files selected for viewing
188 changes: 188 additions & 0 deletions
188
examples/Aquila/Aquila-server/aquila_server_huggingface.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
import os | ||
import uvicorn, json | ||
from asgiref.sync import sync_to_async | ||
import os | ||
import random | ||
import numpy as np | ||
from transformers import AutoTokenizer, AutoModelForCausalLM | ||
import torch | ||
from cyg_conversation import covert_prompt_to_input_ids_with_history | ||
from transformers import ( | ||
AutoTokenizer, | ||
AutoModelForCausalLM, | ||
LogitsProcessorList, | ||
MinLengthLogitsProcessor, | ||
TopKLogitsWarper, | ||
TemperatureLogitsWarper, | ||
TopPLogitsWarper, | ||
StoppingCriteriaList, | ||
MaxLengthCriteria, | ||
) | ||
|
||
model_name = "aquilachat-7b-huggingface" | ||
server_port = 5050 | ||
|
||
device = "cuda:0" | ||
|
||
def load(): | ||
tokenizer = AutoTokenizer.from_pretrained("BAAI/AquilaChat-7B") | ||
model = AutoModelForCausalLM.from_pretrained("BAAI/AquilaChat-7B") | ||
model.half() | ||
model.eval() | ||
model.to("cuda:0") | ||
return model, tokenizer | ||
|
||
model, tokenizer = load() | ||
vocab = tokenizer.get_vocab() | ||
id2word = {v:k for k, v in vocab.items()} | ||
|
||
|
||
def set_random_seed(seed): | ||
"""Set random seed for reproducability.""" | ||
if seed is not None and seed > 0: | ||
random.seed(seed) | ||
np.random.seed(seed) | ||
torch.manual_seed(seed) | ||
|
||
def predict(text, | ||
max_gen_len=200, top_p=0.95, | ||
seed=1234, topk=100, | ||
temperature=0.9, | ||
sft=True): | ||
set_random_seed(seed) | ||
if sft: | ||
tokens = covert_prompt_to_input_ids_with_history(text, history=[], tokenizer=tokenizer, max_token=2048) | ||
tokens = torch.tensor(tokens)[None,].to(device) | ||
|
||
else : | ||
tokens = tokenizer.encode_plus(text)["input_ids"][:-1] | ||
tokens = torch.tensor(tokens)[None,].to(device) | ||
|
||
input_length = len(tokens[0]) | ||
with torch.no_grad(): | ||
|
||
# instantiate logits processors | ||
logits_processor = LogitsProcessorList( | ||
[ | ||
MinLengthLogitsProcessor(1, eos_token_id=100007), | ||
] | ||
) | ||
# instantiate logits processors | ||
logits_warper = LogitsProcessorList( | ||
[ | ||
TopPLogitsWarper(top_p), | ||
TopKLogitsWarper(topk), | ||
TemperatureLogitsWarper(temperature), | ||
|
||
] | ||
) | ||
|
||
stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=input_length + max_gen_len)]) | ||
|
||
out = model.sample( | ||
tokens, | ||
logits_processor=logits_processor, | ||
logits_warper=logits_warper, | ||
stopping_criteria=stopping_criteria, | ||
return_dict_in_generate=True, | ||
output_scores=True, | ||
) | ||
|
||
|
||
# print(out) | ||
out_ids = out["sequences"][0][input_length+1: ].cpu().numpy() | ||
|
||
out_scores = out["scores"] | ||
|
||
out_scores = torch.cat(out_scores, dim=0)[1:] | ||
out_scores = torch.nn.functional.softmax(out_scores, dim=-1).cpu().numpy() | ||
|
||
probs = [] | ||
for i in range(len(out_ids)): | ||
probs.append(float(out_scores[i][out_ids[i]])) | ||
|
||
print(f"probs is {probs}") | ||
|
||
convert_tokens = [] | ||
for t in out_ids: | ||
if t == 100006: | ||
convert_tokens.append("[CLS]") | ||
else : | ||
convert_tokens.append(id2word.get(t, "[unkonwn_token]")) | ||
|
||
out_text = tokenizer.decode(out_ids.tolist()) | ||
print(out_text) | ||
|
||
out = out_text | ||
|
||
if "###" in out: | ||
special_index = out.index("###") | ||
out = out[: special_index] | ||
token_length = len(tokenizer.encode_plus(out)["input_ids"][1:-1]) | ||
convert_tokens = convert_tokens[:token_length] | ||
probs = probs[:token_length] | ||
|
||
if "[UNK]" in out: | ||
special_index = out.index("[UNK]") | ||
out = out[:special_index] | ||
token_length = len(tokenizer.encode_plus(out)["input_ids"][1:-1]) | ||
convert_tokens = convert_tokens[:token_length] | ||
probs = probs[:token_length] | ||
|
||
if "</s>" in out: | ||
special_index = out.index("</s>") | ||
out = out[: special_index] | ||
token_length = len(tokenizer.encode_plus(out)["input_ids"][1:-1]) | ||
convert_tokens = convert_tokens[:token_length] | ||
probs = probs[:token_length] | ||
|
||
if len(out) > 0 and out[0] == " ": | ||
out = out[1:] | ||
|
||
convert_tokens = convert_tokens[1:] | ||
probs = probs[1:] | ||
|
||
return out, convert_tokens, probs | ||
|
||
def init_flask(): | ||
from fastapi import FastAPI, Request | ||
|
||
app = FastAPI() | ||
|
||
@app.post("/func") | ||
async def get_generate_h(request: Request): | ||
json_post_raw = await request.json() | ||
config = json.loads(json_post_raw) | ||
|
||
text = config["prompt"] | ||
topp = config.get("top_p", 0.95) | ||
max_length = config.get("max_new_tokens", 256) | ||
topk = config.get("top_k_per_token", 1000) | ||
temperature = config.get("temperature", 0.9) | ||
sft = config.get("sft", False) | ||
seed = config.get("seed", 1234) | ||
|
||
print(f"sft is {sft}") | ||
out, tokens, probs = await sync_to_async(predict)(text, | ||
max_gen_len=max_length, top_p=topp, | ||
topk=topk, | ||
temperature=temperature, sft=sft, | ||
seed=seed) | ||
|
||
result = { | ||
"completions": [{ | ||
"text": out, | ||
"tokens": tokens, | ||
"logprobs": probs, | ||
"top_logprobs_dicts": [{k: v} for k, v in zip(tokens, probs)], | ||
}], | ||
"input_length": len(config["prompt"]), | ||
"model_info":model_name} | ||
|
||
return result | ||
|
||
return app | ||
|
||
app = init_flask() | ||
|
||
uvicorn.run(app, host='0.0.0.0', port=server_port, workers=1) |