Skip to content

Commit

Permalink
Wav2vec u (facebookresearch#1889)
Browse files Browse the repository at this point in the history
Summary:
Wav2vec-U implementation

Pull Request resolved: fairinternal/fairseq-py#1889

Reviewed By: michaelauli

Differential Revision: D28596815

Pulled By: alexeib

fbshipit-source-id: bb09d081d167d5d10968acc6e056044bf96679ac
  • Loading branch information
alexeib authored and facebook-github-bot committed May 21, 2021
1 parent f9edd9f commit 649af63
Show file tree
Hide file tree
Showing 82 changed files with 6,625 additions and 255 deletions.
Empty file.
94 changes: 94 additions & 0 deletions examples/speech_recognition/kaldi/add-self-loop-simple.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/

#include <iostream>
#include "fstext/fstext-lib.h" // @manual
#include "util/common-utils.h" // @manual

/*
* This program is to modify a FST without self-loop by:
* for each incoming arc with non-eps input symbol, add a self-loop arc
* with that non-eps symbol as input and eps as output.
*
* This is to make sure the resultant FST can do deduplication for repeated
* symbols, which is very common in acoustic model
*
*/
namespace {
int32 AddSelfLoopsSimple(fst::StdVectorFst* fst) {
typedef fst::MutableArcIterator<fst::StdVectorFst> IterType;

int32 num_states_before = fst->NumStates();
fst::MakePrecedingInputSymbolsSame(false, fst);
int32 num_states_after = fst->NumStates();
KALDI_LOG << "There are " << num_states_before
<< " states in the original FST; "
<< " after MakePrecedingInputSymbolsSame, there are "
<< num_states_after << " states " << std::endl;

auto weight_one = fst::StdArc::Weight::One();

int32 num_arc_added = 0;

fst::StdArc self_loop_arc;
self_loop_arc.weight = weight_one;

int32 num_states = fst->NumStates();
std::vector<std::set<int32>> incoming_non_eps_label_per_state(num_states);

for (int32 state = 0; state < num_states; state++) {
for (IterType aiter(fst, state); !aiter.Done(); aiter.Next()) {
fst::StdArc arc(aiter.Value());
if (arc.ilabel != 0) {
incoming_non_eps_label_per_state[arc.nextstate].insert(arc.ilabel);
}
}
}

for (int32 state = 0; state < num_states; state++) {
if (!incoming_non_eps_label_per_state[state].empty()) {
auto& ilabel_set = incoming_non_eps_label_per_state[state];
for (auto it = ilabel_set.begin(); it != ilabel_set.end(); it++) {
self_loop_arc.ilabel = *it;
self_loop_arc.olabel = 0;
self_loop_arc.nextstate = state;
fst->AddArc(state, self_loop_arc);
num_arc_added++;
}
}
}
return num_arc_added;
}

void print_usage() {
std::cout << "add-self-loop-simple usage:\n"
"\tadd-self-loop-simple <in-fst> <out-fst> \n";
}
} // namespace

int main(int argc, char** argv) {
if (argc != 3) {
print_usage();
exit(1);
}

auto input = argv[1];
auto output = argv[2];

auto fst = fst::ReadFstKaldi(input);
auto num_states = fst->NumStates();
KALDI_LOG << "Loading FST from " << input << " with " << num_states
<< " states." << std::endl;

int32 num_arc_added = AddSelfLoopsSimple(fst);
KALDI_LOG << "Adding " << num_arc_added << " self-loop arcs " << std::endl;

fst::WriteFstKaldi(*fst, std::string(output));
KALDI_LOG << "Writing FST to " << output << std::endl;

delete fst;
}
244 changes: 244 additions & 0 deletions examples/speech_recognition/kaldi/kaldi_decoder.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,244 @@
#!/usr/bin/env python3

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from concurrent.futures import ThreadPoolExecutor
import logging
from omegaconf import MISSING
import os
import torch
from typing import Optional
import warnings


from dataclasses import dataclass
from fairseq.dataclass import FairseqDataclass
from .kaldi_initializer import KaldiInitializerConfig, initalize_kaldi


logger = logging.getLogger(__name__)


@dataclass
class KaldiDecoderConfig(FairseqDataclass):
hlg_graph_path: Optional[str] = None
output_dict: str = MISSING

kaldi_initializer_config: Optional[KaldiInitializerConfig] = None

acoustic_scale: float = 0.5
max_active: int = 10000
beam_delta: float = 0.5
hash_ratio: float = 2.0

is_lattice: bool = False
lattice_beam: float = 10.0
prune_interval: int = 25
determinize_lattice: bool = True
prune_scale: float = 0.1
max_mem: int = 0
phone_determinize: bool = True
word_determinize: bool = True
minimize: bool = True

num_threads: int = 1


class KaldiDecoder(object):
def __init__(
self,
cfg: KaldiDecoderConfig,
beam: int,
nbest: int = 1,
):
try:
from kaldi.asr import FasterRecognizer, LatticeFasterRecognizer
from kaldi.base import set_verbose_level
from kaldi.decoder import (
FasterDecoder,
FasterDecoderOptions,
LatticeFasterDecoder,
LatticeFasterDecoderOptions,
)
from kaldi.lat.functions import DeterminizeLatticePhonePrunedOptions
from kaldi.fstext import read_fst_kaldi, SymbolTable
except:
warnings.warn(
"pykaldi is required for this functionality. Please install from https://github.com/pykaldi/pykaldi"
)

# set_verbose_level(2)

self.acoustic_scale = cfg.acoustic_scale
self.nbest = nbest

if cfg.hlg_graph_path is None:
assert (
cfg.kaldi_initializer_config is not None
), "Must provide hlg graph path or kaldi initializer config"
cfg.hlg_graph_path = initalize_kaldi(cfg.kaldi_initializer_config)

assert os.path.exists(cfg.hlg_graph_path), cfg.hlg_graph_path

if cfg.is_lattice:
self.dec_cls = LatticeFasterDecoder
opt_cls = LatticeFasterDecoderOptions
self.rec_cls = LatticeFasterRecognizer
else:
assert self.nbest == 1, "nbest > 1 requires lattice decoder"
self.dec_cls = FasterDecoder
opt_cls = FasterDecoderOptions
self.rec_cls = FasterRecognizer

self.decoder_options = opt_cls()
self.decoder_options.beam = beam
self.decoder_options.max_active = cfg.max_active
self.decoder_options.beam_delta = cfg.beam_delta
self.decoder_options.hash_ratio = cfg.hash_ratio

if cfg.is_lattice:
self.decoder_options.lattice_beam = cfg.lattice_beam
self.decoder_options.prune_interval = cfg.prune_interval
self.decoder_options.determinize_lattice = cfg.determinize_lattice
self.decoder_options.prune_scale = cfg.prune_scale
det_opts = DeterminizeLatticePhonePrunedOptions()
det_opts.max_mem = cfg.max_mem
det_opts.phone_determinize = cfg.phone_determinize
det_opts.word_determinize = cfg.word_determinize
det_opts.minimize = cfg.minimize
self.decoder_options.det_opts = det_opts

self.output_symbols = {}
with open(cfg.output_dict, "r") as f:
for line in f:
items = line.rstrip().split()
assert len(items) == 2
self.output_symbols[int(items[1])] = items[0]

logger.info(f"Loading FST from {cfg.hlg_graph_path}")
self.fst = read_fst_kaldi(cfg.hlg_graph_path)
self.symbol_table = SymbolTable.read_text(cfg.output_dict)

self.executor = ThreadPoolExecutor(max_workers=cfg.num_threads)

def generate(self, models, sample, **unused):
"""Generate a batch of inferences."""
# model.forward normally channels prev_output_tokens into the decoder
# separately, but SequenceGenerator directly calls model.encoder
encoder_input = {
k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens"
}
emissions, padding = self.get_emissions(models, encoder_input)
return self.decode(emissions, padding)

def get_emissions(self, models, encoder_input):
"""Run encoder and normalize emissions"""
model = models[0]

all_encoder_out = [m(**encoder_input) for m in models]

if len(all_encoder_out) > 1:

if "encoder_out" in all_encoder_out[0]:
encoder_out = {
"encoder_out": sum(e["encoder_out"] for e in all_encoder_out)
/ len(all_encoder_out),
"encoder_padding_mask": all_encoder_out[0]["encoder_padding_mask"],
}
padding = encoder_out["encoder_padding_mask"]
else:
encoder_out = {
"logits": sum(e["logits"] for e in all_encoder_out)
/ len(all_encoder_out),
"padding_mask": all_encoder_out[0]["padding_mask"],
}
padding = encoder_out["padding_mask"]
else:
encoder_out = all_encoder_out[0]
padding = (
encoder_out["padding_mask"]
if "padding_mask" in encoder_out
else encoder_out["encoder_padding_mask"]
)

if hasattr(model, "get_logits"):
emissions = model.get_logits(encoder_out, normalize=True)
else:
emissions = model.get_normalized_probs(encoder_out, log_probs=True)

return (
emissions.cpu().float().transpose(0, 1),
padding.cpu() if padding is not None and padding.any() else None,
)

def decode_one(self, logits, padding):
from kaldi.matrix import Matrix

decoder = self.dec_cls(self.fst, self.decoder_options)
asr = self.rec_cls(
decoder, self.symbol_table, acoustic_scale=self.acoustic_scale
)

if padding is not None:
logits = logits[~padding]

mat = Matrix(logits.numpy())

out = asr.decode(mat)

if self.nbest > 1:
from kaldi.fstext import shortestpath
from kaldi.fstext.utils import (
convert_compact_lattice_to_lattice,
convert_lattice_to_std,
convert_nbest_to_list,
get_linear_symbol_sequence,
)

lat = out["lattice"]

sp = shortestpath(lat, nshortest=self.nbest)

sp = convert_compact_lattice_to_lattice(sp)
sp = convert_lattice_to_std(sp)
seq = convert_nbest_to_list(sp)

results = []
for s in seq:
_, o, w = get_linear_symbol_sequence(s)
words = list(self.output_symbols[z] for z in o)
results.append(
{
"tokens": words,
"words": words,
"score": w.value,
"emissions": logits,
}
)
return results
else:
words = out["text"].split()
return [
{
"tokens": words,
"words": words,
"score": out["likelihood"],
"emissions": logits,
}
]

def decode(self, emissions, padding):
if padding is None:
padding = [None] * len(emissions)

ret = list(
map(
lambda e, p: self.executor.submit(self.decode_one, e, p),
emissions,
padding,
)
)
return ret
Loading

0 comments on commit 649af63

Please sign in to comment.