Skip to content

Pytorch optimizer for nonsmooth, nonconvex, sparsity inducing, regularizers

License

Notifications You must be signed in to change notification settings

DouniaLakhmiri/SR2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SR2: Training neural networks with sparsity inducing regularizations .

DescriptionTrain a networkResultsReferences


Description

SR2 is an optimizer that trains deep neural networks with nonsmooth and non convex regularizations to retrieve a sparse and efficient sub-structure.

The optimizer minimizes a the sum of a finite-sum loss function $f$ and a nonsmooth nonconvex regularizer $\mathcal{R}$:

$$ F(x) =f(x) + \lambda \mathcal{R}(x). $$

with an adaptive proximal quadratic regularization scheme.

Supported regularizers are $\ell_p^p$ with $p \in {0, \frac{1}{2}, \frac{2}{3}, 1}$:

  • $||x||_0$ is the number of non zero $x_i$
  • $||x||_p = (\sum_i |x_i|^p)^{\frac{1}{p}}$ for $p = \frac{1}{2}, \frac{2}{3}, 1$

Train a network

Prerequisits

Run SR2

You can start training the network by running a command similar to

python main.py --reg=l0 --precond=andrei --beta=0.95 --lam=0.001

The following table gives a summary of the options and a brief description:

SR2 option Description Possible values
--lam $\lambda$ in $\lambda \mathcal{R}(x)$ $\mathbb{R}$
--reg Regularization function $\mathcal{R}(x)$ l0, l1, l12, l23
--beta Momentum factor $[0, 1]$
--precond Choice of preconditioner to accelerate training none, adam, andrei*
--max_epoch Number of training epochs $\mathbb{N}$
--wd Weight decay $[0, 1]$
--seed Random seed $\mathbb{N}$

Results


References

@misc{https://doi.org/10.48550/arxiv.2206.06531,
  doi = {10.48550/ARXIV.2206.06531}, 
  url = {https://arxiv.org/abs/2206.06531},
  author = {Lakhmiri, Dounia and Orban, Dominique and Lodi, Andrea},
  keywords = {Machine Learning (stat.ML), Machine Learning (cs.LG), Optimization and Control (math.OC), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Mathematics, FOS: Mathematics},
  title = {A Stochastic Proximal Method for Nonsmooth Regularized Finite Sum Optimization},
  publisher = {arXiv},
  year = {2022},
  copyright = {Creative Commons Attribution Share Alike 4.0 International}
}

About

Pytorch optimizer for nonsmooth, nonconvex, sparsity inducing, regularizers

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages