-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
149 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
import matplotlib.pyplot as plt | ||
import geopandas as gpd | ||
import numpy as np | ||
import contextily as cx | ||
from matplotlib.widgets import Slider, Button | ||
from matplotlib_scalebar.scalebar import ScaleBar | ||
import tkinter as tk | ||
from tkinter import filedialog | ||
import os | ||
|
||
global shorelines_path | ||
|
||
root = tk.Tk() | ||
root.shorelines_path = tk.filedialog.askopenfilename(title="Select extracted shorelines joined with model scores") | ||
shorelines_path = root.shorelines_path | ||
root.withdraw() | ||
|
||
|
||
def min_max_normalize(arr): | ||
min_val = np.min(arr) | ||
max_val = np.max(arr) | ||
return (arr - min_val) / (max_val - min_val) | ||
|
||
def add_north_arrow(ax, north_arrow_params): | ||
x,y,arrow_length = north_arrow_params | ||
ax.annotate('N', xy=(x, y), xytext=(x, y-arrow_length), | ||
arrowprops=dict(facecolor='white', width=2, headwidth=4), | ||
ha='center', va='center', fontsize=8, color='white', | ||
xycoords=ax.transAxes) | ||
|
||
def plot_shorelines_by_column(ax, | ||
cax, | ||
shorelines, | ||
site, | ||
north_arrow_params, | ||
scale_bar_loc, | ||
column='year', | ||
image_score=0.0, | ||
seg_score=0.0, | ||
kde_score=0.0, | ||
): | ||
global plotting_shorelines | ||
shorelines['year'] = shorelines['dates'].dt.year | ||
shorelines = shorelines.sort_values(by=column) | ||
plotting_shorelines = shorelines[shorelines['model_scores']>image_score] | ||
plotting_shorelines = plotting_shorelines[plotting_shorelines['model_scores_seg']>seg_score] | ||
plotting_shorelines = plotting_shorelines[plotting_shorelines['kde_value']>kde_score] | ||
lines = plotting_shorelines.to_crs(epsg=3857) | ||
map_plot = lines.plot(ax=ax, | ||
cax=cax, | ||
column=column, | ||
legend=True, | ||
legend_kwds={"label": column, "orientation": "vertical", 'shrink': 0.3}, | ||
cmap='viridis', | ||
linewidth=1 | ||
) | ||
ax.set_title(site) | ||
cx.add_basemap(ax, | ||
source=cx.providers.Esri.WorldImagery, | ||
attribution=False) | ||
add_north_arrow(ax, north_arrow_params) | ||
ax.add_artist(ScaleBar(1, location=scale_bar_loc)) | ||
ax.set_axis_off() | ||
|
||
# Create the figure and the line that will be manipulated | ||
shorelines = gpd.read_file(shorelines_path) | ||
weighted_overall_score = (0.2*shorelines['kde_value']+ | ||
0.3*shorelines['model_scores']+ | ||
0.5*shorelines['model_scores_seg'])/3 | ||
weighted_overall_score = min_max_normalize(weighted_overall_score) | ||
shorelines['overall_score'] = weighted_overall_score | ||
init_score = 0 | ||
fig, ax = plt.subplots() | ||
cax = ax.inset_axes([1.03, 0, 0.1, 1], transform=ax.transAxes) | ||
plot_shorelines_by_column(ax, | ||
cax, | ||
shorelines, | ||
'Elwha', | ||
(0.23, 0.92, 0.2), | ||
'upper left', | ||
column='year', | ||
) | ||
# Adjust the main plot to make room for the sliders | ||
fig.subplots_adjust(left=0.25) | ||
|
||
# Create a vertical slider to control the amplitude | ||
ax_im_score = fig.add_axes([0.25, 0.1, 0.65, 0.03]) | ||
im_score_slider = Slider(ax=ax_im_score, | ||
label="Image Suitability Score", | ||
valmin=0.0, | ||
valmax=0.99, | ||
valinit=0, | ||
valstep=0.01, | ||
orientation="horizontal", | ||
) | ||
ax_seg_score = fig.add_axes([0.25, 0.05, 0.65, 0.03]) | ||
seg_score_slider = Slider(ax=ax_seg_score, | ||
label="Segmentation Score", | ||
valmin=0.0, | ||
valmax=0.99, | ||
valinit=0, | ||
valstep=0.01, | ||
orientation="horizontal", | ||
) | ||
ax_kde_score = fig.add_axes([0.25, 0, 0.65, 0.03]) | ||
kde_score_slider = Slider(ax=ax_kde_score, | ||
label="KDE Score", | ||
valmin=0.0, | ||
valmax=0.99, | ||
valinit=0, | ||
valstep=0.01, | ||
orientation="horizontal", | ||
) | ||
|
||
# Define the update function to be called anytime a slider's value changes | ||
def update(val): | ||
cax.clear() | ||
ax.clear() | ||
plot_shorelines_by_column(ax, | ||
cax, | ||
shorelines, | ||
'Elwha', | ||
(0.23, 0.92, 0.2), | ||
'upper left', | ||
column='year', | ||
image_score=im_score_slider.val, | ||
seg_score=seg_score_slider.val, | ||
kde_score=kde_score_slider.val, | ||
) | ||
fig.canvas.draw_idle() | ||
|
||
|
||
|
||
# Register the update function with each slider | ||
im_score_slider.on_changed(update) | ||
seg_score_slider.on_changed(update) | ||
kde_score_slider.on_changed(update) | ||
|
||
saveax = fig.add_axes([0.1, 0.9, 0.1, 0.04]) | ||
button = Button(saveax, 'Save', hovercolor='0.975') | ||
|
||
def save(event): | ||
save_path = os.path.splitext(shorelines_path)[0]+'_filtered.geojson' | ||
print('saving filtered shorelines to: ' + save_path) | ||
plotting_shorelines.to_file(os.path.splitext(shorelines_path)[0]+'_filtered.geojson') | ||
|
||
button.on_clicked(save) | ||
|
||
plt.show() |