Skip to content

DishantMewada/Application-of-Deep-Learning-to-music-classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This project classifies music based on three genres - Jazz, Classical and Folk music by using keras, libroza libraries in python. Highest accuracy in the matrix shows 87.5%.

Python 3.8.2 libraries: Librosa 0.7.2, Keras 2.4.3, Tensorflow 2.2.0, Scipy 1.5.0, Numba 0.48.0

Dataset used: RWC database (Jazz, Classical and folk music CDs)

Duration:

Classical - 5 hours 29 minutes

Jazz - 3 hours 41 minutes

folk - 6 hours 46 minutes

Pre-requisite: sox, ffmpeg

Properties of each audio files after cropping – 4410Hz, 32 bits per sample, 160 kb/s bitrate, Stereo, 30 seconds long

Feature extraction is done by MFCC (Mel-Frequency Cepstral Components)

Approx. 20% dataset is used for validation and 10% is used for testing.

Experiment of LSTM Recurrent Neural Network based model:

keras.optimizers.RMSprop ( rho=0.90, decay=0.00, lr=0.001 )

keras.optimizers.ADAM ( lr=0.001, rho=0.90, beta_1=0.90, beta_2=0.999, amsgrad=False )

keras.optimizers.SGD ( lr=0.001, momentum=0.00, decay=0.00, nesterov=False )

keras.optimizers.Adagrad ( lr=0.001, epsilon=None, decay=0.00 )

keras.optimizers.Adadelta ( lr=0.001, rho=0.97, epsilon=None, decay=0.00 )

keras.optimizers.Adamax ( lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.00 )

keras.optimizers.Nadam ( lr=0.001, beta_1=0.90, beta_2=0.99, schedule_decay=0.004 )

Results:

Future Scope: You can add music files into the dataset or send me the music files (different dataset), I will create the model again and check the accuracy.

Thank You.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages