Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix small typo in README.md #212

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ Check our [docs](https://torchdyn.readthedocs.io/) for more information.

Interest in the blend of differential equations, deep learning and dynamical systems has been reignited by recent works [[1](https://arxiv.org/abs/1806.07366),[2](https://arxiv.org/abs/2001.04385), [3](https://arxiv.org/abs/2002.08071), [4](https://arxiv.org/abs/1909.01377)]. Modern deep learning frameworks such as PyTorch, coupled with further improvements in computational resources have allowed the continuous version of neural networks, with proposals dating back to the 80s [[5](https://ieeexplore.ieee.org/abstract/document/6814892)], to finally come to life and provide a novel perspective on classical machine learning problems.

We explore how differentiable programming can unlock the effectiveness of deep learning to accelerate progress across scientific domains, including control, fluid dynamics and in general prediction of complex dynamical systems. Conversely, we focus on models powered by numerical methods and signal processing to advance the state of AI in classical domains such as vision of natural language.
We explore how differentiable programming can unlock the effectiveness of deep learning to accelerate progress across scientific domains, including control, fluid dynamics and in general prediction of complex dynamical systems. Conversely, we focus on models powered by numerical methods and signal processing to advance the state of AI in classical domains such as vision or natural language.

<p align="center">
<img src="https://github.com/DiffEqML/diffeqml-media/blob/main/animations/GalNODE.gif" width="200" height="200">
Expand Down