Skip to content

Fix typo #952

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/docs_zh/StarServer.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
## 简介
随着业务的发展,用户数据量激增,算法模型加宽加深,用户的PS任务规模也随之增大。在超大规模任务场景下(几百甚至上千worker),原生tensorflow框架中的一些问题被暴露出来,譬如低效的线程池调度,多处关键路径上的锁开销,低效的执行引擎,频繁的rpc带来的开销以及内存使用效率低等等。

为了解决用户在超大规模场景下遇到的问题,我们提供了StarServer功能,StarServer对于tensorflow做了全方位的优化,包括graph,线程,executor以及内存等优化。将原有tensorflow中send/recv语义修改为pull/push语义,并且在子图划分上支持了该语义。同时实现了图执行过程中的lock free,大大提高的并发执行子图的效率。StarServer在更大规模的扩展性和性能上优于grpc/grpc++,某些模型是可以成倍的提升性能。StarServer的设计上对PS的runtime进行了优化,整个ps端的图执行实现了无锁化的执行。
为了解决用户在超大规模场景下遇到的问题,我们提供了StarServer功能,StarServer对于tensorflow做了全方位的优化,包括graph,线程,executor以及内存等优化。将原有tensorflow中send/recv语义修改为pull/push语义,并且在子图划分上支持了该语义。同时实现了图执行过程中的lock free,大大提高并发执行子图的效率。StarServer在更大规模的扩展性和性能上优于grpc/grpc++,某些模型是可以成倍的提升性能。StarServer的设计上对PS的runtime进行了优化,整个ps端的图执行实现了无锁化的执行。

## 接口介绍
使用StarServer和GRPC一样,通过简单的配置`protocol`即可。
Expand Down