The goal of ACER is to test for differential essentiality
between sets of samples from a CRISPR knockout screen [1]. See
vignettes(package=ACER)
for detailed discussion.
You can install the released version of ACER from GitHub with:
install_github("ACER")
To determine differential essentiality, run the following commands (shown with example data):
library(ACER)
newDataObj <- DataObj$new(masterFiles = system.file('extdata','masterLibraryCounts.csv', package='ACER'),
countFile = system.file('extdata','countData.csv', package='ACER'),
negCtrlFile = system.file('extdata','negCtrlGenes.txt', package='ACER'),
sampleInfoFile=system.file('extdata','sampleAnnotations.txt', package='ACER'),
hasInitSeq = T)
newModelObj <- ModelObj$new(user_DataObj = newDataObj,
use_neg_ctrl=T,
test_samples='test',
use_master_library = T)
newResultsObj <- optimizeModelParameters(user_DataObj = newDataObj,
user_ModelObj = newModelObj)
writeResObj(newResultsObj)
[1] Hutton, E. R., Vakoc, C. R., and Siepel, A. (2020). ACE: A Probabilistic Model for Characterizing Gene-Level Essentiality in CRISPR Screens. bioRxiv, https://www.biorxiv.org/content/10.1101/868919v2