-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added train & Ian's data loader (WPI)
- Loading branch information
Showing
2 changed files
with
174 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
""" | ||
This script was used to train the pre-trained model weights that were given as an option during the exercise. | ||
""" | ||
|
||
from embed_time.dataloader import LiveTLSDataset | ||
from embed_time.model import Encoder, Decoder, VAE | ||
import torch | ||
from torch.utils.data import DataLoader | ||
from torch.nn import functional as F | ||
from tqdm import tqdm | ||
from pathlib import Path | ||
import os | ||
import skimage.io as io | ||
import torchvision.transforms as trans | ||
from torchvision.transforms import v2 | ||
from embed_time.transforms import CustomToTensor, SelectRandomTimepoint | ||
from embed_time.dataloader import LiveTLSDataset | ||
|
||
|
||
# return reconstruction error + KL divergence losses | ||
def loss_function(recon_x, x, mu, log_var): | ||
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum') | ||
KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) | ||
return BCE + KLD | ||
|
||
def train(epoch, model, loss_fn, optimizer, train_loader): | ||
model.train() | ||
train_loss = 0 | ||
for batch_idx, (data, _) in enumerate(train_loader): | ||
data = data.cuda() | ||
optimizer.zero_grad() | ||
|
||
recon_batch, mu, log_var = model(data) | ||
loss = loss_fn(recon_batch, data, mu, log_var) | ||
|
||
loss.backward() | ||
train_loss += loss.item() | ||
optimizer.step() | ||
|
||
if batch_idx % 100 == 0: | ||
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | ||
epoch, batch_idx * len(data), len(train_loader.dataset), | ||
100. * batch_idx / len(train_loader), loss.item() / len(data))) | ||
print('====> Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss / len(train_loader.dataset))) | ||
|
||
def train_classifier(base_dir, loss_fn, epochs=25): | ||
checkpoint_dir = Path(base_dir) / "../checkpoints" | ||
checkpoint_dir.mkdir(exist_ok=True) | ||
data_dir = Path(base_dir) / "../data" | ||
data_dir.mkdir(exist_ok=True) | ||
|
||
encoder = Encoder(input_shape=..., | ||
x_dim=..., | ||
h_dim1=..., | ||
h_dim2=..., | ||
z_dim=...) | ||
decoder = Decoder(z_dim=..., | ||
h_dim1=..., | ||
h_dim2=..., | ||
x_dim=..., | ||
output_shape=...) | ||
model = VAE(encoder, decoder) | ||
data = LiveTLSDataset(data_dir, download=True, train=True) | ||
dataloader = DataLoader(data, batch_size=32, shuffle=True, pin_memory=True) | ||
|
||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
model.to(device) | ||
|
||
losses = [] | ||
for epoch in range(epochs): | ||
for x, y in tqdm(dataloader, desc=f"Epoch {epoch}"): | ||
optimizer.zero_grad() | ||
y_pred = model(x.to(device)) | ||
loss = loss_fn(y_pred, y.to(device)) | ||
loss.backward() | ||
optimizer.step() | ||
print(f"Epoch {epoch}: Loss = {loss.item()}") | ||
losses.append(loss.item()) | ||
# TODO save every epoch instead of overwriting? | ||
torch.save(model.state_dict(), checkpoint_dir / "model.pth") | ||
|
||
with open(checkpoint_dir / "losses.txt", "w") as f: | ||
f.write("\n".join(str(l) for l in losses)) | ||
|
||
|
||
if __name__ == "__main__": | ||
# checkpoint_dir = Path(base_dir) / "../checkpoints" | ||
# checkpoint_dir.mkdir(exist_ok=True) | ||
data_location = "/mnt/efs/dlmbl/G-et/data/live-TLS" | ||
|
||
folder_imgs = data_location +"/"+'Control_Dataset_4TP_Normalized' | ||
metadata = data_location + "/" +'Control_Dataset_4TP_Ground_Truth' | ||
|
||
loading_transforms = trans.Compose([ | ||
CustomToTensor(), | ||
SelectRandomTimepoint(0), | ||
v2.RandomAffine( | ||
degrees=90, | ||
translate=[0.1,0.1], | ||
), | ||
v2.RandomHorizontalFlip(), | ||
v2.RandomVerticalFlip(), | ||
v2.GaussianNoise(0,0.05) | ||
]) | ||
|
||
dataset_w_t = LiveTLSDataset( | ||
metadata, | ||
folder_imgs, | ||
metadata_columns=["Run","Plate","ID"], | ||
return_metadata=True, | ||
transform = loading_transforms, | ||
) | ||
|
||
|
||
|
||
NUM_EPOCHS = 50 | ||
encoder = Encoder(input_shape=..., | ||
x_dim=..., | ||
h_dim1=..., | ||
h_dim2=..., | ||
z_dim=...) | ||
decoder = Decoder(z_dim=..., | ||
h_dim1=..., | ||
h_dim2=..., | ||
x_dim=..., | ||
output_shape=...) | ||
model = VAE(encoder, decoder) | ||
data = LiveTLSDataset(data_dir, download=True, train=True) | ||
dataloader = DataLoader(data, batch_size=32, shuffle=True, pin_memory=True) | ||
|
||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
model.to(device) | ||
|
||
for epoch in range(NUM_EPOCHS): | ||
train(epoch) | ||
# test() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
import os | ||
import pandas as pd | ||
# from torchvision.io import read_image | ||
from torch.utils.data import Dataset | ||
import tifffile as tiff | ||
|
||
class LiveGastruloidDataset(Dataset): | ||
def __init__( | ||
self, | ||
img_dir, | ||
transform=None, | ||
target_transform=None, | ||
): | ||
self.img_dir = img_dir | ||
self.transform = transform | ||
self.target_transform = target_transform | ||
self.img_folders = os.listdir(img_dir) | ||
|
||
def __len__(self): | ||
return len(self.img_folders) | ||
|
||
def __getitem__(self, idx): | ||
img_path = os.path.join( | ||
self.img_dir, | ||
self.img_names[idx] | ||
) | ||
|
||
image = tiff.imread(img_path) | ||
|
||
if self.transform: | ||
image = self.transform(image) | ||
|
||
if self.target_transform: | ||
label = self.target_transform(label) | ||
|
||
return image |