This is the repository for the project of course EEE5346 Autonomous Robot Navigation in SUSTech 2023-Spring. The description of the course project is in the file project-description.pdf, and the Github repository is MedlarTea/EE5346_2023_project.
Clone the repository MedlarTea/EE5346_2023_project and unzip the data.
git clone https://github.com/MedlarTea/EE5346_2023_project
cd EE5346_2023_project
unzip -q '*.zip'
Method 1: Use the prepared data
Build the data symlinks and unzip the mask files
ln -s /path/to/repository/Loop-Closure-Verification-Based-on-Environmental-Invariance-Feature-Points/data/*_mask.zip /path/to/repository/EE5346_2023_project
cd /path/to/repository/EE5346_2023_project
unzip -q '*_mask.zip'
Method 2: Use the pretrained model
Download the checkpoint file from models and unzip it to DANNet/checkpoint
cd Loop-Closure-Verification-Based-on-Environmental-Invariance-Feature-Points/DANNet
# compute mask, input "Autumn_mini_query" can be "Autumn_mini_query", "Night_mini_ref" or "Suncloud_mini_ref", the output mask will be saved in dir like "Autumn_mini_query_mask"
python evaluate.py --input /path/to/repository/EE5346_2023_project/Autumn_mini_query
Run python script lcv_validation.py
cd /path/to/repository/Loop-Closure-Verification-Based-on-Environmental-Invariance-Feature-Points
python lcv_validation.py --data_root_dir /path/to/repository/EE5346_2023_project --save_dir ./output
Following MedlarTea/EE5346_2023_project
Following the steps in Experiment on Validation Split
python lcv_test.py --test_file /path/to/test_file --data_root_dir /path/to/data/for/test --save_dir ./output_for_test
example for test_file and data dir for test:
test_file.txt
scene_1/000001.png scene_2/000001.png
scene_1/000002.png scene_2/000003.png
data for test directory structure
data_for_test
├── scene_1
│ ├── 000001.png
│ ├── 000002.png
│ └── 000003.png
├──scene_1_mask
│ ├── 000001.npy
│ ├── 000002.npy
│ └── 000003.npy
├──scene_2
│ ├── 000001.png
│ ├── 000002.png
│ └── 000003.png
└──scene_2_mask
├── 000001.npy
├── 000002.npy
└── 000003.npy