-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1004 from CombustionToolbox/turbulence
Add: include new `+turbulence` subpackage
- Loading branch information
Showing
10 changed files
with
923 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
341 changes: 341 additions & 0 deletions
341
+combustiontoolbox/+turbulence/@HelmholtzSolver/HelmholtzSolver.m
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,341 @@ | ||
classdef HelmholtzSolver < handle | ||
% The :mat:func:`HelmholtzSolver` class computes the Helmholtz-Hodge | ||
% decomposition of a 3D velocity field into its solenoidal and | ||
% dilatational parts using fast Fourier transform [1]. | ||
% | ||
% The decomposition is performed with the spectral method, which is | ||
% only suitable for relatively smooth fields, i.e., with little power | ||
% on small scales. The code assumes that the grid is uniform with | ||
% dx = dy = dz. | ||
% | ||
% This code is based on Ref. [2] and has been rewritten in MATLAB | ||
% with some modifications. | ||
% | ||
% Notes: | ||
% For even NX, NY, and NZ, decomposed fields can be complex, | ||
% with the imaginary part coming from the real part of the kmode | ||
% at Nyquist frequency. In principle, the Nyquist frequency | ||
% kmode should be dropped when doing the first derivatives to | ||
% maintain symmetry. See footnote on page 4 of [2]. However, | ||
% when the field is smooth enough, the imaginary part caused by | ||
% the Nyquist frequency kmode should be negligible. | ||
% | ||
% Args: | ||
% file_location (char): Path to the data .hdf file | ||
% file_location_nodes (char): Path to the grid .hdf file | ||
% T_ref (float): Temperature of reference [K] | ||
% mu_ref (float): Dynamic viscosity of reference [kg/(m-s)] or [Pa-s] | ||
% | ||
% Example: | ||
% solver = HelmholtzSolver(); | ||
% | ||
% References: | ||
% [1] Johnson, S. G. (2011). Notes on FFT-based differentiation. | ||
% MIT Applied Mathematics, Tech. Rep. | ||
% Available: http://math.mit.edu/~stevenj/fft-deriv.pdf | ||
% [2] Xun Shi, Helmholtz-Hodge decomposition using fft (Python), | ||
% Available: https://github.com/shixun22/helmholtz | ||
% | ||
% | ||
% @author: Alberto Cuadra Lara | ||
% Postdoctoral researcher - Group Fluid Mechanics | ||
% Universidad Carlos III de Madrid | ||
|
||
properties | ||
tol0 = 1e-3 % Tolerance for checks | ||
FLAG_CHECKS = true % Flag to perform checks | ||
FLAG_TIME = true % Flag to print elapsed time | ||
FLAG_REPORT = false % Flag to print predefined plots | ||
time % Elapsed time | ||
plotConfig % PlotConfig object | ||
end | ||
|
||
methods | ||
|
||
function obj = HelmholtzSolver(varargin) | ||
% Constructor | ||
defaultPlotConfig = combustiontoolbox.utils.display.PlotConfig(); | ||
|
||
% Parse input arguments | ||
p = inputParser; | ||
addParameter(p, 'tol0', obj.tol0, @(x) isnumeric(x)); | ||
addParameter(p, 'FLAG_CHECKS', obj.FLAG_CHECKS, @(x) islogical(x)); | ||
addParameter(p, 'FLAG_TIME', obj.FLAG_TIME, @(x) islogical(x)); | ||
addParameter(p, 'FLAG_REPORT', obj.FLAG_REPORT, @(x) islogical(x)); | ||
addParameter(p, 'plotConfig', defaultPlotConfig, @(x) isa(x, 'combustiontoolbox.utils.display.PlotConfig')); | ||
parse(p, varargin{:}); | ||
|
||
% Set properties | ||
obj.tol0 = p.Results.tol0; | ||
obj.FLAG_CHECKS = p.Results.FLAG_CHECKS; | ||
obj.FLAG_TIME = p.Results.FLAG_TIME; | ||
obj.FLAG_REPORT = p.Results.FLAG_REPORT; | ||
obj.plotConfig = p.Results.plotConfig; | ||
end | ||
|
||
function obj = set(obj, property, value, varargin) | ||
% Set properties of the HelmholtzSolver object | ||
% | ||
% Args: | ||
% obj (HelmholtzSolver): HelmholtzSolver object | ||
% property (char): Property name | ||
% value (float): Property value | ||
% | ||
% Optional Args: | ||
% * property (char): Property name | ||
% * value (float): Property value | ||
% | ||
% Returns: | ||
% obj (HelmholtzSolver): HelmholtzSolver object with updated properties | ||
% | ||
% Examples: | ||
% * set(HelmholtzSolver(), 'tol0', 1e-10) | ||
% * set(HelmholtzSolver(), 'tol0', 1e-10, 'FLAG_CHECKS', false) | ||
|
||
varargin = [{property, value}, varargin{:}]; | ||
|
||
for i = 1:2:length(varargin) | ||
% Assert that the property exists | ||
assert(isprop(obj, varargin{i}), 'Property not found'); | ||
|
||
% Set property | ||
obj.(varargin{i}) = varargin{i + 1}; | ||
end | ||
|
||
end | ||
|
||
function [solenoidal, dilatational, STOP] = solve(obj, velocity, varargin) | ||
% Compute Helmholtz decomposition of the velocity field | ||
% | ||
% Args: | ||
% obj (HelmholtzSolver): HelmholtzSolver object | ||
% velocity (VelocityField): Velocity field as a VelocityField object, struct, or 4D matrix | ||
% | ||
% Optional Args: | ||
% * rho (float): Density field | ||
% | ||
% Returns: | ||
% solenoidal (VelocityField): Struct with fields (u, v, w) containing the solenoidal velocity components | ||
% dilatational (VelocityField): Struct with fields (u, v, w) containing the dilatational velocity components | ||
% STOP (float): Relative error doing the decomposition | ||
% | ||
% Examples: | ||
% * [solenoidal, dilatational, STOP] = solve(obj, velocity) | ||
% * [solenoidal, dilatational, STOP] = solve(obj, velocity, 'rho', rho) | ||
|
||
% Import packages | ||
import combustiontoolbox.common.Units.convertData2VelocityField | ||
|
||
% Timer | ||
obj.time = tic; | ||
|
||
% Parse input arguments | ||
p = inputParser; | ||
addOptional(p, 'rho', [], @(x) isnumeric(x)); | ||
parse(p, varargin{:}); | ||
|
||
% Set properties | ||
rho = p.Results.rho; | ||
|
||
% Reshape velocity input and compute fluctuations | ||
velocity = convertData2VelocityField(velocity); | ||
velocity = obj.computeFluctuations(velocity, rho); | ||
|
||
% Solve the Helmholtz equation | ||
[solenoidal, dilatational] = obj.decomposition(velocity); | ||
|
||
% Check results | ||
STOP = obj.check(velocity, solenoidal, dilatational); | ||
|
||
% Time elapsed | ||
obj.time = toc(obj.time); | ||
|
||
% Print elapsed time | ||
printTime(obj); | ||
end | ||
|
||
function [solenoidal, dilatational] = decomposition(obj, velocity) | ||
% Compute Helmholtz decomposition of the velocity field | ||
% | ||
% Args: | ||
% velocity (VelocityField): VelocityField instance with fields (u, v, w) containing the velocity components | ||
% | ||
% Returns: | ||
% solenoidal (VelocityField): VelocityField instance with fields (u, v, w) containing the solenoidal velocity components | ||
% dilatational (VelocityField): VelocityField instance with fields (u, v, w) containing the dilatational velocity components | ||
|
||
% Import packages | ||
import combustiontoolbox.turbulence.VelocityField | ||
|
||
% Get N-D fast Fourier transform (fft) | ||
U = fftn(velocity.u); | ||
V = fftn(velocity.v); | ||
W = fftn(velocity.w); | ||
|
||
% Compute wave numbers | ||
[KX, KY, KZ] = obj.computeWaveNumbers(size(velocity.u)); | ||
|
||
% Compute k^2, avoiding division by zero | ||
K2 = KX.^2 + KY.^2 + KZ.^2; | ||
K2(K2 == 0) = 1; | ||
|
||
% Compute velocity divergence | ||
div = (U .* KX + V .* KY + W .* KZ); | ||
clear U V W % Free memory | ||
|
||
% Compute the Helmholtz decomposition (dilatational) | ||
H = div ./ K2; | ||
clear div K2 % Free memory | ||
|
||
% Compute dilatational components | ||
dilatational = VelocityField(real(ifftn(H .* KX)), ... | ||
real(ifftn(H .* KY)), ... | ||
real(ifftn(H .* KZ))); | ||
clear H KX KY KZ; % Free memory | ||
|
||
% Compute solenoidal components | ||
solenoidal = VelocityField(velocity.u - dilatational.u, ... | ||
velocity.v - dilatational.v, ... | ||
velocity.w - dilatational.w); | ||
end | ||
|
||
function [STOP, status] = check(obj, velocity, solenoidal, dilatational) | ||
% Check the results of the Helmholtz decomposition | ||
% | ||
% Args: | ||
% obj (HelmholtzSolver): HelmholtzSolver object | ||
% velocity (VelocityField): VelocityField instance with fields (u, v, w) containing the velocity components | ||
% solenoidal (VelocityField): VelocityField instance with fields (u, v, w) containing the solenoidal velocity components | ||
% dilatational (VelocityField): VelocityField instance with fields (u, v, w) containing the dilatational velocity components | ||
% | ||
% Returns: | ||
% STOP (float): Relative error doing the decomposition | ||
% status (bool): Flag indicating if the checks passed | ||
|
||
if ~obj.FLAG_CHECKS | ||
status = []; | ||
STOP = []; | ||
return | ||
end | ||
|
||
% Validate Helmholtz decomposition results | ||
fprintf('Performing checks... '); | ||
|
||
% Compute wave numbers | ||
[KX, KY, KZ] = obj.computeWaveNumbers(size(velocity.u)); | ||
|
||
% Compute magnitude of the original velocity field for relative error | ||
velocityMagnitude = globalMagnitude(velocity); | ||
|
||
% Check if the solenoidal part is divergence-free | ||
divSolenoidal = ifftn((fftn(solenoidal.u) .* KX + ... | ||
fftn(solenoidal.v) .* KY + ... | ||
fftn(solenoidal.w) .* KZ)); | ||
|
||
divError = max(abs(divSolenoidal(:))) / velocityMagnitude; | ||
|
||
if divError > obj.tol0 | ||
fprintf('Error!\nSolenoidal part divergence too high: %.2e\n', divError); | ||
STOP = divError; | ||
return; | ||
end | ||
|
||
% Check if the dilatational part is curl-free | ||
curlDilatational = ifftn((fftn(dilatational.w) .* KY - fftn(dilatational.v) .* KZ + ... | ||
fftn(dilatational.u) .* KZ - fftn(dilatational.w) .* KX + ... | ||
fftn(dilatational.v) .* KX - fftn(dilatational.u) .* KY) * 1i * 2 * pi); | ||
|
||
curlError = max(abs(curlDilatational(:))) / velocityMagnitude; | ||
|
||
if curlError > obj.tol0 | ||
fprintf('Error!\nDilatational part curl too high: %.2e\n', curlError); | ||
STOP = curlError; | ||
return; | ||
end | ||
|
||
% Check if the solenoidal and dilatational parts sum up to the original field | ||
uRecon = solenoidal.u + dilatational.u; | ||
vRecon = solenoidal.v + dilatational.v; | ||
wRecon = solenoidal.w + dilatational.w; | ||
|
||
diffError = sqrt(sum((uRecon(:) - velocity.u(:)).^2 + ... | ||
(vRecon(:) - velocity.v(:)).^2 + ... | ||
(wRecon(:) - velocity.w(:)).^2)) / velocityMagnitude; | ||
|
||
if diffError > obj.tol0 | ||
fprintf('Error!\nReconstructed field does not match original field: %.2e\n', diffMax); | ||
STOP = diffMax; | ||
return; | ||
end | ||
|
||
% Set flag to pass and stop | ||
STOP = max([divError, curlError, diffError]); | ||
status = true; | ||
fprintf('OK!\n'); | ||
end | ||
|
||
function printTime(obj) | ||
% Print execution time | ||
% | ||
% Args: | ||
% obj (EquilibriumSolver): Object of the class EquilibriumSolver | ||
|
||
if ~obj.FLAG_TIME | ||
return | ||
end | ||
|
||
% Definitions | ||
operationName = 'Helmholtz decomposition'; | ||
|
||
% Print elapsed time | ||
fprintf('\nElapsed time for %s: %.5f seconds\n', operationName, obj.time); | ||
end | ||
|
||
end | ||
|
||
methods (Static) | ||
|
||
function velocity = computeFluctuations(velocity, rho) | ||
% Compute fluctuating velocity components | ||
% | ||
% Args: | ||
% velocity (struct): Struct with fields (u, v, w) | ||
% rho (float): Density field | ||
% | ||
% Returns: | ||
% velocity (struct): Struct with fields (u, v, w) containing the fluctuating velocity components | ||
|
||
% For compressible flows | ||
if ~isempty(rho) | ||
rhoMean = mean(rho, 'all'); | ||
rhou = mean(rho .* velocity.u, 'all') / rhoMean; | ||
rhov = mean(rho .* velocity.v, 'all') / rhoMean; | ||
rhow = mean(rho .* velocity.w, 'all') / rhoMean; | ||
|
||
velocity.u = sqrt(rho) .* (velocity.u - rhou); | ||
velocity.v = sqrt(rho) .* (velocity.v - rhov); | ||
velocity.w = sqrt(rho) .* (velocity.w - rhow); | ||
return | ||
end | ||
|
||
% For incompressible flows | ||
velocity.u = velocity.u - mean(velocity.u, 'all'); | ||
velocity.v = velocity.v - mean(velocity.v, 'all'); | ||
velocity.w = velocity.w - mean(velocity.w, 'all'); | ||
end | ||
|
||
function [KX, KY, KZ] = computeWaveNumbers(sz) | ||
% Compute wave number grids for FFT | ||
|
||
% Import packages | ||
import combustiontoolbox.utils.math.fftfreq | ||
|
||
kx = fftfreq(sz(1)); | ||
ky = fftfreq(sz(2)); | ||
kz = fftfreq(sz(3)); | ||
[KX, KY, KZ] = ndgrid(kx, ky, kz); | ||
end | ||
|
||
end | ||
|
||
end |
Oops, something went wrong.