Skip to content

College-works-gokulnath/Ex-08-Data-Visualization_1

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

Ex-08-Data-Visualization-

AIM

To Perform Data Visualization on a complex dataset and save the data to a file.

Explanation

Data visualization is the graphical representation of information and data. By using visual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data.

ALGORITHM

STEP 1

Read the given Data

STEP 2

Clean the Data Set using Data Cleaning Process

STEP 3

Apply Feature generation and selection techniques to all the features of the data set

STEP 4

Apply data visualization techniques to identify the patterns of the data.

Developed By Gokul Nath
Ref No: 212220220013

CODE

#Reading the given dataset

import pandas as pd
df=pd.read_csv("Superstore.csv",encoding='unicode_escape')

df.head()
#Data Visualization using Seaborn

import seaborn as sns
from matplotlib import pyplot as plt
#1.Line Plot

plt.figure(figsize=(9,6))
sns.lineplot(x="Segment",y="Region",data=df,marker='o')
plt.xticks(rotation = 90)

sns.lineplot(x='Ship Mode',y='Category', hue ="Segment",data=df)

sns.lineplot(x="Category",y="Sales",data=df,marker='o')
#2.Scatterplot

sns.scatterplot(x='Category',y='Sub-Category',data=df)

sns.scatterplot(x='Category', y='Sub-Category', hue ="Segment",data=df)

plt.figure(figsize=(10,7))
sns.scatterplot(x="Region",y="Sales",data=df)
plt.xticks(rotation = 90)
#3.Boxplot

sns.boxplot(x="Sub-Category",y="Discount",data=df)

sns.boxplot( x="Profit", y="Category",data=df)
#4.Violin Plot

sns.violinplot(x="Profit",data=df)
#5.Barplot

sns.barplot(x="Sub-Category",y="Sales",data=df)
plt.xticks(rotation = 90)

sns.barplot(x="Category",y="Sales",data=df)
plt.xticks(rotation = 90)
#6.Pointplot

sns.pointplot(x=df["Quantity"],y=df["Discount"])
#7.Count plot

sns.countplot(x="Category",data=df)

sns.countplot(x="Sub-Category",data=df)
#8.Histogram

sns.histplot(data=df,x ='Ship Mode',hue='Sub-Category')
#9.KDE Plot

sns.kdeplot(x="Profit", data = df,hue='Category')

#Data Visualization Using MatPlotlib
#1.Plot

plt.plot(df['Category'], df['Sales'])
plt.show()
#2.Heatmap

df.corr()
plt.subplots(figsize=(12,7))
sns.heatmap(df.corr(),annot=True)
#3.Piechart

df1=df.groupby(by=["Ship Mode"]).sum()
labels=[]
for i in df1.index:
    labels.append(i)
colors=sns.color_palette("bright")
plt.pie(df1["Sales"],labels=labels,autopct="%0.0f%%")
plt.show()

df3=df.groupby(by=["Category"]).sum()
labels=[]
for i in df3.index:
    labels.append(i) 
plt.figure(figsize=(8,8))
colors = sns.color_palette('pastel')
plt.pie(df3["Profit"],colors = colors,labels=labels, autopct = '%0.0f%%')
plt.show()
#4.Histogram

plt.hist(df["Sub-Category"],facecolor="peru",edgecolor="blue",bins=10)
plt.show()
#5.Bargraph

plt.bar(df.index,df['Category'])
plt.show()
#6.Scatterplot

plt.scatter(df["Region"],df["Profit"], c ="blue")
plt.show() 
#7.Boxplot

plt.boxplot(x="Sales",data=df)
plt.show()

OUTPUT

Reading the given dataset

171088128-126c7176-a343-4f0d-9775-be64ef025be9

Data Visualization Using Seaborn:

1.Line Plot

171088148-00745931-00a9-4e77-9652-bde07ec58041

171088166-0622ed0d-983e-4fbb-9a07-ffde6ae73fbf

171088179-9468b1ae-1975-4ddd-8c7d-15a62cde1105

2.Scatterplot

171088199-43c1ab2b-8c36-4787-a25b-9fb447afb27a

171088208-7f3a8cdd-e757-4d86-8366-8e7795a10be1

171088221-0b5ce909-ea1b-4d11-b544-02a182ae71f8

3.Boxplot

171088266-a16dba86-8fc1-4f39-a43e-8946245952ed

171088275-5fc74eac-6c9c-4751-9a25-a6bb396b51b0

4.Violin Plot

171088288-b57cfa86-14ca-4da3-be85-2aedda3ef070

5.Barplot

171088300-2f65fe18-2157-4408-93b9-621db48d3fe5

171088309-f8fc728a-98de-46da-af45-5504501865a5

6.Pointplot

171088319-54fd42f2-c10d-4696-ab1d-cf26b67876ab

7.Count plot

171088340-ac5e9f66-7ecd-4fbc-b58f-0e8a9c854f58

171088373-3b644c23-eb34-4c62-9854-7beedc247c8e

8.Histogram

171088392-27dc5b70-ca70-4069-ac16-50edbcb51fb0

9.KDE Plot

171088402-28a45721-eef1-44ae-8a71-8f1cdfc84371

Data Visualization Using Matplotlib:

1.Plot

171088777-b33aa92c-b4f2-4b2e-af45-c86899df03c9

2.Heatmap

171088793-a39c19c3-f481-4837-a9ab-c59bbbb80b72

3.Piechart

171088813-8407fd7d-2c62-41f5-9e0d-25242f9576ac

171088875-f1b23ed9-0c39-4061-aeeb-bd21c3943308

4.Histogram

171088893-37660289-6bfa-4274-94b9-f9c10373a8a4

5.Bargraph

171088899-506a8bfe-128b-44a6-aea9-6ad9d68d27e7

6.Scatterplot

171088911-4bc14fcd-490e-40bc-a732-d8e733ca4713

7.Boxplot

171088927-6bb49da4-25fe-4f10-8dab-11a1f0b68c88

RESULT

Hence,Data Visualization is applied on the complex dataset using libraries like Seaborn and Matplotlib successfully and the data is saved to file.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published