forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Xccl all #7
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
Chao1Han
wants to merge
109
commits into
main
Choose a base branch
from
xccl-p2p
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Chao1Han
pushed a commit
that referenced
this pull request
Dec 16, 2024
See pytorch#140725 (comment) Running `torch.mps.synchronize()` after metal kernel resulted in infinite wait inside `[_MTLCommandBuffer waitUntilCompleted]` ``` (lldb) bt * thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP * frame #0: 0x00000001aa919084 Metal`pthread_cond_wait + 12 frame #1: 0x00000001aa78b1b4 Metal`-[_MTLCommandBuffer waitUntilCompleted] + 84 frame #2: 0x00000001032bf358 libtorch_python.dylib`torch::mps::MPSModule_deviceSynchronize(_object*, _object*) + 40 frame #3: 0x0000000100e94c20 Python`cfunction_vectorcall_NOARGS + 100 frame #4: 0x0000000100e389b8 Python`PyObject_Vectorcall + 92 frame #5: 0x0000000100f61e38 Python`_PyEval_EvalFrameDefault + 19040 frame #6: 0x0000000100f5d180 Python`PyEval_EvalCode + 200 frame #7: 0x0000000100fcd1a4 Python`run_eval_code_obj + 104 frame #8: 0x0000000100fccbe4 Python`run_mod + 168 frame #9: 0x0000000100fcb518 Python`pyrun_file + 164 frame #10: 0x0000000100fca854 Python`_PyRun_SimpleFileObject + 256 frame #11: 0x0000000100fca4e8 Python`_PyRun_AnyFileObject + 80 frame #12: 0x0000000100ff2028 Python`pymain_run_file_obj + 164 frame #13: 0x0000000100ff1ce4 Python`pymain_run_file + 72 frame #14: 0x0000000100ff0f74 Python`Py_RunMain + 988 frame #15: 0x0000000100ff1564 Python`pymain_main + 304 frame #16: 0x0000000100ff1604 Python`Py_BytesMain + 40 frame #17: 0x000000019f630274 dyld`start + 2840 ``` Pull Request resolved: pytorch#141296 Approved by: https://github.com/huydhn
pytorchmergebot
pushed a commit
that referenced
this pull request
Mar 5, 2025
…pytorch#144120) (pytorch#146372) Summary: # Summary ### Sticky points Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC ## Dependencies - Flash PR: Dao-AILab/flash-attention#1419 ### Other Points - The BC linter is complaining about losing generate.py and its functions which is not real BC surface cc albanD imported-using-ghimport Test Plan: Imported from OSS Building in dev `buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a //caffe2:ATen-cu --show-full-output ` I and Nming the .so I do see that the flash symbols are correctly named: ``` 0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const 0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const 0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const 0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const 0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const ``` Reviewed By: vkuzo Differential Revision: D68502879 Pulled By: drisspg Pull Request resolved: pytorch#146372 Approved by: https://github.com/jbschlosser
pytorchmergebot
pushed a commit
that referenced
this pull request
Jun 4, 2025
Which inherits from `RuntimeError` and contains `error_code`, which in case of CUDA should contain error returned by `cudaGetLastError` `torch::detail::_new_accelerator_error_object(c10::AcceleratorError&)` follows the pattern of CPython's [`PyErr_SetString`](https://github.com/python/cpython/blob/cb8a72b301f47e76d93a7fe5b259e9a5758792e1/Python/errors.c#L282), namely - Convert cstr into Python string with `PyUnicode_FromString` - Create new exception object using `PyObject_CallOneArg` just like it's done in [`_PyErr_CreateException`](https://github.com/python/cpython/blob/cb8a72b301f47e76d93a7fe5b259e9a5758792e1/Python/errors.c#L32) - Set `error_code` property using `PyObject_SetAttrString` - decref all temporary references Test that it works and captures CPP backtrace (in addition to CI) by running ```python import os os.environ['TORCH_SHOW_CPP_STACKTRACES'] = '1' import torch x = torch.rand(10, device="cuda") y = torch.arange(20, device="cuda") try: x[y] = 2 print(x) except torch.AcceleratorError as e: print("Exception was raised", e.args[0]) print("Captured error code is ", e.error_code) ``` which produces following output ``` Exception was raised CUDA error: device-side assert triggered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. Exception raised from c10_cuda_check_implementation at /home/ubuntu/pytorch/c10/cuda/CUDAException.cpp:41 (most recent call first): C++ CapturedTraceback: #4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0 #5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0 #6 c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) [clone .cold] from CUDAException.cpp:0 #7 void at::native::gpu_kernel_impl<at::native::AbsFunctor<float> >(at::TensorIteratorBase&, at::native::AbsFunctor<float> const&) [clone .isra.0] from tmpxft_000191fc_00000000-6_AbsKernel.cudafe1.cpp:0 #8 at::native::abs_kernel_cuda(at::TensorIteratorBase&) from ??:0 #9 at::Tensor& at::native::unary_op_impl_with_complex_to_float_out<at::native::abs_stub_DECLARE_DISPATCH_type>(at::Tensor&, at::Tensor const&, at::native::abs_stub_DECLARE_DISPATCH_type&, bool) [clone .constprop.0] from UnaryOps.cpp:0 #10 at::(anonymous namespace)::(anonymous namespace)::wrapper_CUDA_out_abs_out(at::Tensor const&, at::Tensor&) from RegisterCUDA_0.cpp:0 #11 at::_ops::abs_out::call(at::Tensor const&, at::Tensor&) from ??:0 #12 at::native::abs(at::Tensor const&) from ??:0 #13 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeExplicitAutograd__abs>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&> >, at::Tensor (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from RegisterCompositeExplicitAutograd_0.cpp:0 #14 at::_ops::abs::redispatch(c10::DispatchKeySet, at::Tensor const&) from ??:0 #15 torch::autograd::VariableType::(anonymous namespace)::abs(c10::DispatchKeySet, at::Tensor const&) from VariableType_1.cpp:0 #16 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&), &torch::autograd::VariableType::(anonymous namespace)::abs>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&> >, at::Tensor (c10::DispatchKeySet, at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from VariableType_1.cpp:0 #17 at::_ops::abs::call(at::Tensor const&) from ??:0 pytorch#18 at::native::isfinite(at::Tensor const&) from ??:0 pytorch#19 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeImplicitAutograd__isfinite>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&> >, at::Tensor (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from RegisterCompositeImplicitAutograd_0.cpp:0 pytorch#20 at::_ops::isfinite::call(at::Tensor const&) from ??:0 pytorch#21 torch::autograd::THPVariable_isfinite(_object*, _object*, _object*) from python_torch_functions_2.cpp:0 pytorch#22 PyObject_CallFunctionObjArgs from ??:0 pytorch#23 _PyObject_MakeTpCall from ??:0 pytorch#24 _PyEval_EvalFrameDefault from ??:0 pytorch#25 _PyObject_FastCallDictTstate from ??:0 pytorch#26 _PyStack_AsDict from ??:0 pytorch#27 _PyObject_MakeTpCall from ??:0 pytorch#28 _PyEval_EvalFrameDefault from ??:0 pytorch#29 _PyFunction_Vectorcall from ??:0 pytorch#30 _PyEval_EvalFrameDefault from ??:0 pytorch#31 _PyFunction_Vectorcall from ??:0 pytorch#32 _PyEval_EvalFrameDefault from ??:0 pytorch#33 _PyFunction_Vectorcall from ??:0 pytorch#34 _PyEval_EvalFrameDefault from ??:0 pytorch#35 PyFrame_GetCode from ??:0 pytorch#36 PyNumber_Xor from ??:0 pytorch#37 PyObject_Str from ??:0 pytorch#38 PyFile_WriteObject from ??:0 pytorch#39 _PyWideStringList_AsList from ??:0 pytorch#40 _PyDict_NewPresized from ??:0 pytorch#41 _PyEval_EvalFrameDefault from ??:0 pytorch#42 PyEval_EvalCode from ??:0 pytorch#43 PyEval_EvalCode from ??:0 pytorch#44 PyUnicode_Tailmatch from ??:0 pytorch#45 PyInit__collections from ??:0 pytorch#46 PyUnicode_Tailmatch from ??:0 pytorch#47 _PyRun_SimpleFileObject from ??:0 pytorch#48 _PyRun_AnyFileObject from ??:0 pytorch#49 Py_RunMain from ??:0 pytorch#50 Py_BytesMain from ??:0 pytorch#51 __libc_init_first from ??:0 pytorch#52 __libc_start_main from ??:0 pytorch#53 _start from ??:0 Captured error code is 710 ``` Pull Request resolved: pytorch#152023 Approved by: https://github.com/eqy, https://github.com/mradmila, https://github.com/ngimel ghstack dependencies: pytorch#154436
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Fixes #ISSUE_NUMBER