Skip to content

Apache InLong - a one-stop integration framework for massive data

License

Notifications You must be signed in to change notification settings

ChPi/incubator-inlong

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Apache InLong

Build Status CodeCov Maven Central GitHub release License

What is Apache InLong?

Apache InLong(incubating) is a one-stop integration framework for massive data that provides automatic, secure and reliable data transmission capabilities. InLong supports both batch and stream data processing at the same time, which offers great power to build data analysis, modeling and other real-time applications based on streaming data.

InLong (应龙) is a divine beast in Chinese mythology who guides river into the sea, it is regarded as a metaphor of the InLong system for reporting streams of data.

InLong was originally built at Tencent, which has served online businesses for more than 8 years, to support massive data (data scale of more than 40 trillion pieces of data per day) reporting services in big data scenarios. The entire platform has integrated 5 modules: Ingestion, Convergence, Caching, Sorting, and Management, so that the business only needs to provide data sources, data service quality, data landing clusters and data landing formats, that is, the data can be continuously pushed from the source to the target cluster, which greatly meets the data reporting service requirements in the business big data scenario.

For getting more information, please visit our project documentation at https://inlong.apache.org/ Apache InLong

Features

Apache InLong offers a variety of features:

  • Ease of Use: a SaaS-based service platform, you can easily and quickly report, transfer, and distribute data by publishing and subscribing to data based on topics.
  • Stability & Reliability: derived from the actual online production environment, it delivers high-performance processing capabilities for 10 trillion-level data streams and highly reliable services for 100 billion-level data streams.
  • Comprehensive Features: supports various types of data access methods and can be integrated with different types of Message Queue (MQ) services, it also provides real-time data extract, transform, and load (ETL) and sorting capabilities based on rules, allows you to plug features to extend system capabilities.
  • Service Integration: provides unified system monitoring and alert services, it provides fine-grained metrics to facilitate data visualization, you can view the running status of queues and topic-based data statistics in a unified data metric platform, configure the alert service based on your business requirements so that users can be alerted when errors occur.
  • Scalability: adopts a pluggable architecture that allows you to plug modules into the system based on specific protocols, so you can replace components and add features based on your business requirements

When should I use InLong?

InLong is based on MQ and aims to provide a one-stop, practice-tested module pluggable integration framework for massive data, based on this system, users can easily build stream-based data applications. It is suitable for environments that need to quickly build a data reporting platform, as well as an ultra-large-scale data reporting environment that InLong is very suitable for, and an environment that needs to automatically sort and land the reported data.

You can use InLong in the following ways:

Supported Data Nodes (Updating)

Type Name Version Other
Extract Node Auto Push None Using SDK to send
File None CSV, Key-Value, JSON, Avro
Kafka 2.x Canal JSON
MySQL 5.x, 8.x Debezium JSON
Load Node Auto Consumption None Using MQ SDK consume messages and Parse InLongMsg
Hive 2.x TextFile, SequenceFile,OrcFile, Parquet, Avro
Iceberg 0.12.x Parquet, Orc, Avro
ClickHouse v20+ Canal JSON
Kafka 2.x JSON, Canal, Avro

Build InLong

More detailed instructions can be found at Quick Start section in the documentation.

Requirements:

Compile and install:

$ mvn clean install -DskipTests

(Optional) Compile using docker image:

$ docker pull maven:3.6-openjdk-8
$ docker run -v `pwd`:/inlong  -w /inlong maven:3.6-openjdk-8 mvn clean install -DskipTests

after compile successfully, you could find distribution file at inlong-distribution/target.

Deploy InLong

Develop InLong

Contribute to InLong

Contact Us

Documentation

License

© Contributors Licensed under an Apache-2.0 license.

About

Apache InLong - a one-stop integration framework for massive data

Resources

License

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 84.1%
  • JavaScript 7.5%
  • TypeScript 2.7%
  • C++ 2.6%
  • Go 1.5%
  • Shell 0.7%
  • Other 0.9%