forked from rishavpramanik/CervicalFuzzyDistanceEnsemble
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2c476d9
commit 544b582
Showing
17 changed files
with
8,669 additions
and
9 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
import numpy as np | ||
from utils.generate_csv import generate_csv | ||
from utils.k_fold_splits import k_fold_splits | ||
from utils.k_fold_separate import k_fold_separate | ||
|
||
df = generate_csv() | ||
|
||
y = np.array([i for i in df["class"]]) | ||
x = np.array([i for i in df["path"]]) | ||
|
||
files_for_train_x = [] | ||
files_for_validation_x = [] | ||
files_for_train_y = [] | ||
files_for_validation_y = [] | ||
|
||
k_fold_splits(x,y, files_for_train_x , files_for_validation_x , files_for_train_y , files_for_validation_y ) # n_splits = 5 | ||
|
||
n = len(files_for_train_x) | ||
for i in range(0,n): | ||
|
||
k_fold_separate(files_for_train_x[i] , files_for_train_y[i] , files_for_validation_x[i] ,files_for_validation_y[i] , "InceptionV3" , "MobileNetV2" ,"InceptionResNetV2" ,i+1 , NUM_EPOCHS = 1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,9 +1,173 @@ | ||
numpy==1.21.0 | ||
pandas==1.1.5 | ||
matplotlib==3.2.2 | ||
seaborn==2.5.0 | ||
opencv-python==4.2.0.32 | ||
tensorflow==2.5.3 | ||
sklearn==0.24.1 | ||
skimage==0.19.0 | ||
scipy==1.7.1 | ||
# This file may be used to create an environment using: | ||
# $ conda create --name <env> --file <this file> | ||
# platform: win-64 | ||
_tflow_select=2.3.0=eigen | ||
absl-py=0.15.0=pyhd3eb1b0_0 | ||
aiohttp=3.8.1=py38h2bbff1b_0 | ||
aiosignal=1.2.0=pyhd3eb1b0_0 | ||
argon2-cffi=20.1.0=py38h2bbff1b_1 | ||
astor=0.8.1=py38haa95532_0 | ||
astunparse=1.6.3=py_0 | ||
async-timeout=4.0.1=pyhd3eb1b0_0 | ||
async_generator=1.10=pyhd3eb1b0_0 | ||
attrs=21.4.0=pyhd3eb1b0_0 | ||
backcall=0.2.0=pyhd3eb1b0_0 | ||
blas=1.0=mkl | ||
bleach=4.1.0=pyhd3eb1b0_0 | ||
blinker=1.4=py38haa95532_0 | ||
bottleneck=1.3.2=py38h2a96729_1 | ||
brotli=1.0.9=ha925a31_2 | ||
brotlipy=0.7.0=py38h2bbff1b_1003 | ||
ca-certificates=2020.10.14=0 | ||
cachetools=4.2.2=pyhd3eb1b0_0 | ||
certifi=2020.6.20=py38_0 | ||
cffi=1.15.0=py38h2bbff1b_1 | ||
charset-normalizer=2.0.4=pyhd3eb1b0_0 | ||
click=8.0.3=pyhd3eb1b0_0 | ||
colorama=0.4.4=pyhd3eb1b0_0 | ||
cryptography=3.4.8=py38h71e12ea_0 | ||
cycler=0.11.0=pyhd3eb1b0_0 | ||
dataclasses=0.8=pyh6d0b6a4_7 | ||
debugpy=1.5.1=py38hd77b12b_0 | ||
decorator=5.1.1=pyhd3eb1b0_0 | ||
defusedxml=0.7.1=pyhd3eb1b0_0 | ||
entrypoints=0.3=py38_0 | ||
fonttools=4.25.0=pyhd3eb1b0_0 | ||
freetype=2.10.4=hd328e21_0 | ||
frozenlist=1.2.0=py38h2bbff1b_0 | ||
gast=0.4.0=pyhd3eb1b0_0 | ||
google-auth=1.33.0=pyhd3eb1b0_0 | ||
google-auth-oauthlib=0.4.4=pyhd3eb1b0_0 | ||
google-pasta=0.2.0=pyhd3eb1b0_0 | ||
grpcio=1.42.0=py38hc60d5dd_0 | ||
h5py=2.10.0=py38h5e291fa_0 | ||
hdf5=1.10.4=h7ebc959_0 | ||
icc_rt=2019.0.0=h0cc432a_1 | ||
icu=58.2=ha925a31_3 | ||
idna=3.3=pyhd3eb1b0_0 | ||
importlib-metadata=4.8.2=py38haa95532_0 | ||
importlib_metadata=4.8.2=hd3eb1b0_0 | ||
intel-openmp=2021.4.0=haa95532_3556 | ||
ipykernel=6.4.1=py38haa95532_1 | ||
ipython=7.31.1=py38haa95532_0 | ||
ipython_genutils=0.2.0=pyhd3eb1b0_1 | ||
ipywidgets=7.6.5=pyhd3eb1b0_1 | ||
jedi=0.18.1=py38haa95532_1 | ||
jinja2=3.0.2=pyhd3eb1b0_0 | ||
joblib=1.1.0=pyhd3eb1b0_0 | ||
jpeg=9d=h2bbff1b_0 | ||
jsonschema=3.2.0=pyhd3eb1b0_2 | ||
jupyter=1.0.0=py38_7 | ||
jupyter_client=7.1.2=pyhd3eb1b0_0 | ||
jupyter_console=6.4.0=pyhd3eb1b0_0 | ||
jupyter_core=4.9.1=py38haa95532_0 | ||
jupyterlab_pygments=0.1.2=py_0 | ||
jupyterlab_widgets=1.0.0=pyhd3eb1b0_1 | ||
keras=2.4.3=pyhd8ed1ab_0 | ||
keras-applications=1.0.8=py_1 | ||
keras-preprocessing=1.1.2=pyhd3eb1b0_0 | ||
kiwisolver=1.3.1=py38hd77b12b_0 | ||
libpng=1.6.37=h2a8f88b_0 | ||
libprotobuf=3.19.1=h23ce68f_0 | ||
libtiff=4.2.0=hd0e1b90_0 | ||
libwebp=1.2.0=h2bbff1b_0 | ||
lz4-c=1.9.3=h2bbff1b_1 | ||
markdown=3.3.4=py38haa95532_0 | ||
markupsafe=2.0.1=py38h2bbff1b_0 | ||
matplotlib=3.5.0=py38haa95532_0 | ||
matplotlib-base=3.5.0=py38h6214cd6_0 | ||
matplotlib-inline=0.1.2=pyhd3eb1b0_2 | ||
mistune=0.8.4=py38he774522_1000 | ||
mkl=2021.4.0=haa95532_640 | ||
mkl-service=2.4.0=py38h2bbff1b_0 | ||
mkl_fft=1.3.1=py38h277e83a_0 | ||
mkl_random=1.2.2=py38hf11a4ad_0 | ||
multidict=5.1.0=py38h2bbff1b_2 | ||
munkres=1.1.4=py_0 | ||
nbclient=0.5.3=pyhd3eb1b0_0 | ||
nbconvert=6.1.0=py38haa95532_0 | ||
nbformat=5.1.3=pyhd3eb1b0_0 | ||
nest-asyncio=1.5.1=pyhd3eb1b0_0 | ||
notebook=6.4.6=py38haa95532_0 | ||
numexpr=2.8.1=py38hb80d3ca_0 | ||
numpy=1.21.5=py38ha4e8547_0 | ||
numpy-base=1.21.5=py38hc2deb75_0 | ||
oauthlib=3.1.1=pyhd3eb1b0_0 | ||
olefile=0.46=pyhd3eb1b0_0 | ||
openssl=1.1.1m=h2bbff1b_0 | ||
opt_einsum=3.3.0=pyhd3eb1b0_1 | ||
packaging=21.3=pyhd3eb1b0_0 | ||
pandas=1.3.5=py38h6214cd6_0 | ||
pandocfilters=1.5.0=pyhd3eb1b0_0 | ||
parso=0.8.3=pyhd3eb1b0_0 | ||
pickleshare=0.7.5=pyhd3eb1b0_1003 | ||
pillow=8.4.0=py38hd45dc43_0 | ||
pip=21.2.2=py38haa95532_0 | ||
prometheus_client=0.13.1=pyhd3eb1b0_0 | ||
prompt-toolkit=3.0.20=pyhd3eb1b0_0 | ||
prompt_toolkit=3.0.20=hd3eb1b0_0 | ||
protobuf=3.19.1=py38hd77b12b_0 | ||
pyasn1=0.4.8=pyhd3eb1b0_0 | ||
pyasn1-modules=0.2.8=py_0 | ||
pycparser=2.21=pyhd3eb1b0_0 | ||
pygments=2.11.2=pyhd3eb1b0_0 | ||
pyjwt=2.1.0=py38haa95532_0 | ||
pyopenssl=21.0.0=pyhd3eb1b0_1 | ||
pyparsing=3.0.4=pyhd3eb1b0_0 | ||
pyqt=5.9.2=py38hd77b12b_6 | ||
pyreadline=2.1=py38_1 | ||
pyrsistent=0.18.0=py38h196d8e1_0 | ||
pysocks=1.7.1=py38haa95532_0 | ||
python=3.8.12=h6244533_0 | ||
python-dateutil=2.8.2=pyhd3eb1b0_0 | ||
python_abi=3.8=2_cp38 | ||
pytz=2021.3=pyhd3eb1b0_0 | ||
pywin32=302=py38h827c3e9_1 | ||
pywinpty=2.0.2=py38h5da7b33_0 | ||
pyyaml=6.0=py38h294d835_3 | ||
pyzmq=22.3.0=py38hd77b12b_2 | ||
qt=5.9.7=vc14h73c81de_0 | ||
qtconsole=5.2.2=pyhd3eb1b0_0 | ||
qtpy=1.11.2=pyhd3eb1b0_0 | ||
requests=2.27.1=pyhd3eb1b0_0 | ||
requests-oauthlib=1.3.0=py_0 | ||
rsa=4.7.2=pyhd3eb1b0_1 | ||
scikit-learn=1.0.2=py38hf11a4ad_1 | ||
scipy=1.7.3=py38h0a974cb_0 | ||
send2trash=1.8.0=pyhd3eb1b0_1 | ||
setuptools=58.0.4=py38haa95532_0 | ||
sip=4.19.13=py38hd77b12b_0 | ||
six=1.16.0=pyhd3eb1b0_0 | ||
sqlite=3.37.2=h2bbff1b_0 | ||
tensorboard=2.4.0=pyhc547734_0 | ||
tensorboard-plugin-wit=1.6.0=py_0 | ||
tensorflow=2.3.0=mkl_py38h8c0d9a2_0 | ||
tensorflow-base=2.3.0=eigen_py38h75a453f_0 | ||
tensorflow-estimator=2.6.0=pyh7b7c402_0 | ||
termcolor=1.1.0=py38haa95532_1 | ||
terminado=0.9.4=py38haa95532_0 | ||
testpath=0.5.0=pyhd3eb1b0_0 | ||
threadpoolctl=2.2.0=pyh0d69192_0 | ||
tk=8.6.11=h2bbff1b_0 | ||
tornado=6.1=py38h2bbff1b_0 | ||
traitlets=5.1.1=pyhd3eb1b0_0 | ||
typing-extensions=3.10.0.2=hd3eb1b0_0 | ||
typing_extensions=3.10.0.2=pyh06a4308_0 | ||
urllib3=1.26.8=pyhd3eb1b0_0 | ||
vc=14.2=h21ff451_1 | ||
vs2015_runtime=14.27.29016=h5e58377_2 | ||
wcwidth=0.2.5=pyhd3eb1b0_0 | ||
webencodings=0.5.1=py38_1 | ||
werkzeug=2.0.2=pyhd3eb1b0_0 | ||
wheel=0.37.1=pyhd3eb1b0_0 | ||
widgetsnbextension=3.5.1=py38_0 | ||
win_inet_pton=1.1.0=py38haa95532_0 | ||
wincertstore=0.2=py38haa95532_2 | ||
winpty=0.4.3=4 | ||
wrapt=1.13.3=py38h2bbff1b_2 | ||
xz=5.2.5=h62dcd97_0 | ||
yaml=0.2.5=h8ffe710_2 | ||
yarl=1.6.3=py38h2bbff1b_0 | ||
zipp=3.7.0=pyhd3eb1b0_0 | ||
zlib=1.2.11=h8cc25b3_4 | ||
zstd=1.4.9=h19a0ad4_0 |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
import tensorflow as tf | ||
from tensorflow.keras.models import Model | ||
|
||
def create_model(model_name,IMG_SIZE = 256): | ||
|
||
|
||
IMG_SHAPE = (IMG_SIZE, IMG_SIZE, 3) # IMG_SIZE = 256 | ||
|
||
MobileNetV2_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE, | ||
include_top=False, | ||
weights='imagenet') | ||
|
||
InceptionV3_model = tf.keras.applications.inception_v3.InceptionV3(input_shape=IMG_SHAPE, | ||
include_top=False, | ||
weights='imagenet') | ||
|
||
InceptionResNetV2_model = tf.keras.applications.inception_resnet_v2.InceptionResNetV2(input_shape=IMG_SHAPE, | ||
include_top=False, | ||
weights='imagenet') | ||
|
||
models = {"MobileNetV2": MobileNetV2_model, "InceptionV3": InceptionV3_model, | ||
"InceptionResNetV2": InceptionResNetV2_model} | ||
|
||
|
||
model = models[model_name] | ||
|
||
x = tf.keras.layers.Conv2D(128, (3, 3), activation='relu')(model.output) | ||
x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(x) | ||
x = tf.keras.layers.Flatten()(x) | ||
x = tf.keras.layers.Dense(100, activation='relu')(x) | ||
x = tf.keras.layers.Dense(5, activation='softmax')(x) | ||
|
||
model = Model(inputs=model.input, outputs=x) | ||
|
||
my_model = tf.keras.models.clone_model(model) | ||
return my_model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
import numpy as np | ||
import scipy | ||
def fuzzy_dist(classifier1, classifier2, classifier3, verbose=False): | ||
out = np.empty(len(classifier1)) | ||
for i in range(len(classifier1)): | ||
if np.argmax(classifier1[i]) == np.argmax(classifier2[i]) == np.argmax(classifier3[i]): | ||
out[i] = np.argmax(classifier2[i]) | ||
else: | ||
measure = np.zeros(len(classifier1[i])) | ||
for j in range(len(classifier1[i])): | ||
scores = np.array( | ||
[classifier1[i, j], classifier2[i, j], classifier3[i, j]]) | ||
measure[j] = scipy.spatial.distance.cosine(np.ones(3), scores)*scipy.spatial.distance.euclidean( | ||
np.ones(3), scores)*scipy.spatial.distance.cityblock(np.ones(3), scores) | ||
if verbose: | ||
print(measure) | ||
out[i] = np.argmin(measure) | ||
return out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
from msilib.schema import Directory | ||
import os | ||
import pandas as pd | ||
from sklearn.utils import shuffle | ||
|
||
def generate_csv(): | ||
print("runing") | ||
uniques = ["Dyskeratotic" , "Koilocytotic" , "Metaplastic" , "Parabasal" , "SuperficialIntermediate"] | ||
dirs = ["train" , "test"] | ||
|
||
""" | ||
+-- train | ||
| +-- Dyskeratotic | ||
| +-- Koilocytotic | ||
| +-- Metaplastic | ||
| +-- Parabasal | ||
| +-- SuperficialIntermediate | ||
+-- test | ||
| +-- Dyskeratotic | ||
| +-- Koilocytotic | ||
| +-- Metaplastic | ||
| +-- Parabasal | ||
| +-- SuperficialIntermediate | ||
""" | ||
|
||
data = [] | ||
for dir in dirs : | ||
for unique in uniques: | ||
directory = "data/SiPakMed/" + dir + "/" + unique | ||
|
||
for filename in os.listdir(directory): | ||
|
||
path = directory + "/" + filename | ||
data.append([ filename , path , unique]) | ||
|
||
df = pd.DataFrame(data, columns = ["filename" ,"path", "class"]) | ||
df = shuffle(df) | ||
name = "csv_files/" + "Data-full" | ||
df.to_csv(name, index = False ) | ||
print("runing") | ||
|
||
return df | ||
|
||
|
||
|
Oops, something went wrong.