Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Development #45

Merged
merged 6 commits into from
Aug 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
208 changes: 133 additions & 75 deletions R/mod_Filtering.R
Original file line number Diff line number Diff line change
Expand Up @@ -58,14 +58,7 @@ mod_Filtering_ui <- function(id){
)
),
column(width = 6,
tabBox(width =12, collapsible = FALSE, status = "info",
id = "updog_tab", height = "600px",
tabPanel("Bias Histogram", icon = icon("image"), plotOutput(ns("bias_hist"), height = '550px')),
tabPanel("OD Histogram", icon = icon("image"), plotOutput(ns("od_hist"), height = '550px')),
tabPanel("Prop_mis Histogram", icon = icon("image"), plotOutput(ns("maxpostprob_hist"), height = '550px')),
tabPanel("SNP_miss", icon = icon("image"), plotOutput(ns("missing_snp_hist"), height = '550px')),
tabPanel("Sample_miss", icon = icon("image"), plotOutput(ns("missing_sample_hist"), height = '550px'))
)
uiOutput(ns("din_tabs")),
),
column(width = 3,
valueBoxOutput(ns("snp_retained_box"), width = NULL),
Expand Down Expand Up @@ -139,6 +132,13 @@ mod_Filtering_server <- function(id){

disable("start_updog_filter")

output$din_tabs <- renderUI({
tabBox(width =12, collapsible = FALSE, status = "info",
id = "updog_tab", height = "600px",
tabPanel("Results", p("Upload VCF file to access results in this section."))
)
})

vcf <- eventReactive(input$run_filters, {

# Ensure the files are uploaded
Expand All @@ -165,7 +165,37 @@ mod_Filtering_server <- function(id){

req(input$filter_ploidy, input$filter_output_name,input$updog_rdata)

if (input$use_updog) {
#Input file
vcf <- read.vcfR(input$updog_rdata$datapath, verbose = FALSE)

# Identify if have updog parameters
format_fields <- unique(vcf@gt[,1])
info_fields <- vcf@fix[1,8]
updog_par <- grepl("MPP", format_fields) & grepl("PMC", info_fields) & grepl("BIAS", info_fields) & grepl("OD", info_fields)

if(updog_par){
output$din_tabs <- renderUI({
tabBox(width =12, collapsible = FALSE, status = "info",
id = "updog_tab", height = "600px",
tabPanel("Bias Histogram", icon = icon("image"), plotOutput(ns("bias_hist"), height = '550px')),
tabPanel("OD Histogram", icon = icon("image"), plotOutput(ns("od_hist"), height = '550px')),
tabPanel("Prop_mis Histogram", icon = icon("image"), plotOutput(ns("maxpostprob_hist"), height = '550px')),
tabPanel("SNP_miss", icon = icon("image"), plotOutput(ns("missing_snp_hist"), height = '550px')),
tabPanel("Sample_miss", icon = icon("image"), plotOutput(ns("missing_sample_hist"), height = '550px'))
)
})
} else {
output$din_tabs <- renderUI({
tabBox(width =12, collapsible = FALSE, status = "info",
id = "updog_tab", height = "600px",
tabPanel("SNP_miss", icon = icon("image"), plotOutput(ns("missing_snp_hist"), height = '550px')),
tabPanel("Sample_miss", icon = icon("image"), plotOutput(ns("missing_sample_hist"), height = '550px'))
)
})
}


if (input$use_updog & updog_par) {
# Use Updog filtering parameters
OD_filter <- as.numeric(input$OD_filter)
Prop_mis <- as.numeric(input$Prop_mis)
Expand Down Expand Up @@ -193,8 +223,7 @@ mod_Filtering_server <- function(id){
maf_filter <- input$filter_maf

updateProgressBar(session = session, id = "pb_filter", value = 10, title = "Processing VCF file")
#Input file
vcf <- read.vcfR(input$updog_rdata$datapath, verbose = FALSE)

#Starting SNPs
starting_snps <- nrow(vcf)
output$snp_removed_box <- renderValueBox({
Expand Down Expand Up @@ -226,6 +255,23 @@ mod_Filtering_server <- function(id){
filter.MAF = as.numeric(maf_filter),
filter.MPP = max_post)

if (length(vcf@gt) == 0) {
shinyalert(
title = "All markers were filtered out",
text = "Loose the parameters to access results in this tab",
size = "s",
closeOnEsc = TRUE,
closeOnClickOutside = FALSE,
html = TRUE,
type = "error",
showConfirmButton = TRUE,
confirmButtonText = "OK",
confirmButtonCol = "#004192",
showCancelButton = FALSE,
animation = TRUE
)
}

#Getting missing data information
#Add support for genotype matrix filtering?
#Pb
Expand Down Expand Up @@ -336,6 +382,8 @@ mod_Filtering_server <- function(id){
abline(v = median(as.numeric(filtering_output$df$BIAS)), col = "green", lty = 2) # Median line
abline(v = 0.5, col = "black", lty = 2) # proposed lower line
abline(v = 2, col = "black", lty = 2) # proposed upper line
legend("topright", legend=c("mean", "median", "suggested threshold"),
col=c("red", "green","black"), lty=2, cex=0.8)

} else if (input$filter_hist == "OD Histogram") {

Expand All @@ -355,6 +403,8 @@ mod_Filtering_server <- function(id){
abline(v = mean(as.numeric(filtering_output$df$OD)), col = "red", lty = 2) # Mean line
abline(v = median(as.numeric(filtering_output$df$OD)), col = "green", lty = 2) # Median line
abline(v = 0.05, col = "black", lty = 2) # proposed filter by updog
legend("topright", legend=c("mean", "median", "suggested threshold"),
col=c("red", "green","black"), lty=2, cex=0.8)

} else if (input$filter_hist == "Prop_mis Histogram") {

Expand All @@ -372,6 +422,8 @@ mod_Filtering_server <- function(id){
abline(v = mean(as.numeric(filtering_output$df$PMC)), col = "red", lty = 2) # Mean line
abline(v = median(as.numeric(filtering_output$df$PMC)), col = "green", lty = 2) # Median line
abline(v = quantile(as.numeric(filtering_output$df$PMC), 0.95), col = "blue", lty = 2)
legend("topright", legend=c("mean", "median", "quantile"),
col=c("red", "green","blue"), lty=2, cex=0.8)

} else if (input$filter_hist == "SNP_mis") {

Expand All @@ -389,6 +441,8 @@ mod_Filtering_server <- function(id){
abline(v = mean(as.numeric(filtering_files$snp_miss_df)), col = "red", lty = 2) # Mean line
abline(v = median(as.numeric(filtering_files$snp_miss_df)), col = "green", lty = 2) # Median line
abline(v = quantile(as.numeric(filtering_files$snp_miss_df), 0.95), col = "blue", lty = 2)
legend("topright", legend=c("mean", "median", "quantile"),
col=c("red", "green","blue"), lty=2, cex=0.8)

} else if (input$filter_hist == "Sample_mis") {

Expand All @@ -406,6 +460,8 @@ mod_Filtering_server <- function(id){
abline(v = mean(as.numeric(filtering_files$sample_miss_df)), col = "red", lty = 2) # Mean line
abline(v = median(as.numeric(filtering_files$sample_miss_df)), col = "green", lty = 2) # Median line
abline(v = quantile(as.numeric(filtering_files$sample_miss_df), 0.95), col = "blue", lty = 2)
legend("topright", legend=c("mean", "median", "quantile"),
col=c("red", "green","blue"), lty=2, cex=0.8)
}
dev.off()
}
Expand All @@ -421,19 +477,6 @@ mod_Filtering_server <- function(id){

observeEvent(filtering_files$raw_vcf_df, {


# Function to split INFO column and expand it into multiple columns
split_info_column <- function(info) {
# Split the INFO column by semicolon
info_split <- str_split(info, ";")[[1]]

# Create a named list by splitting each element by equals sign
info_list <- set_names(map(info_split, ~ str_split(.x, "=")[[1]][2]),
map(info_split, ~ str_split(.x, "=")[[1]][1]))

return(info_list)
}

# Apply the function to each row and bind the results into a new dataframe
new_df <- data.frame(filtering_files$raw_vcf_df) %>%
mutate(INFO_list = map(INFO, split_info_column)) %>%
Expand All @@ -450,67 +493,80 @@ mod_Filtering_server <- function(id){
###Bias

#Histogram
output$bias_hist <- renderPlot({
hist(as.numeric(new_df$BIAS),
main = "Unfiltered SNP bias histogram",
xlab = "bias",
ylab = "SNPs",
col = "lightblue",
border = "black",
xlim = c(0,5),
breaks = as.numeric(input$hist_bins))
axis(1, at = seq(0, 5, by = .2), labels = rep("", length(seq(0, 5, by = 0.2)))) # Add ticks
abline(v = mean(as.numeric(new_df$BIAS)), col = "red", lty = 2) # Mean line
abline(v = median(as.numeric(new_df$BIAS)), col = "green", lty = 2) # Median line
abline(v = 0.5, col = "black", lty = 2) # proposed lower line
abline(v = 2, col = "black", lty = 2) # proposed upper line
})
if(any(grepl("BIAS", colnames(new_df)))){
output$bias_hist <- renderPlot({
hist(as.numeric(new_df$BIAS),
main = "Unfiltered SNP bias histogram",
xlab = "bias",
ylab = "SNPs",
col = "lightblue",
border = "black",
xlim = c(0,5),
breaks = as.numeric(input$hist_bins))
axis(1, at = seq(0, 5, by = .2), labels = rep("", length(seq(0, 5, by = 0.2)))) # Add ticks
abline(v = mean(as.numeric(new_df$BIAS)), col = "red", lty = 2) # Mean line
abline(v = median(as.numeric(new_df$BIAS)), col = "green", lty = 2) # Median line
abline(v = 0.5, col = "black", lty = 2) # proposed lower line
abline(v = 2, col = "black", lty = 2) # proposed upper line
legend("topright", legend=c("mean", "median", "suggested threshold"),
col=c("red", "green","black"), lty=2, cex=0.8)
})
}

###OD
quantile(as.numeric(new_df$OD), 0.95)
#Histogram
output$od_hist <- renderPlot({
hist(as.numeric(new_df$OD),
main = "Unfiltered SNP overdispersion parameter histogram",
xlab = "OD",
ylab = "SNPs",
col = "lightblue",
border = "black",
xlim = c(0,0.6),
breaks = as.numeric(input$hist_bins))
axis(1, at = seq(0, 0.6, by = .01), labels = rep("", length(seq(0, 0.6, by = 0.01)))) # Add ticks
abline(v = 0.05, col = "black", lty = 2) # proposed filter by updog
if(any(grepl("OD", colnames(new_df)))){

# Add vertical lines
abline(v = mean(as.numeric(new_df$OD)), col = "red", lty = 2) # Mean line
abline(v = median(as.numeric(new_df$OD)), col = "green", lty = 2) # Median line
abline(v = 0.05, col = "black", lty = 2) # proposed filter by updog
quantile(as.numeric(new_df$OD), 0.95)
#Histogram
output$od_hist <- renderPlot({
hist(as.numeric(new_df$OD),
main = "Unfiltered SNP overdispersion parameter histogram",
xlab = "OD",
ylab = "SNPs",
col = "lightblue",
border = "black",
xlim = c(0,0.6),
breaks = as.numeric(input$hist_bins))
axis(1, at = seq(0, 0.6, by = .01), labels = rep("", length(seq(0, 0.6, by = 0.01)))) # Add ticks
abline(v = 0.05, col = "black", lty = 2) # proposed filter by updog

})
# Add vertical lines
abline(v = mean(as.numeric(new_df$OD)), col = "red", lty = 2) # Mean line
abline(v = median(as.numeric(new_df$OD)), col = "green", lty = 2) # Median line
abline(v = 0.05, col = "black", lty = 2) # proposed filter by updog
legend("topright", legend=c("mean", "median", "suggested threshold"),
col=c("red", "green","black"), lty=2, cex=0.8)

})
}

##MAXPOSTPROB

#Histogram
if(any(grepl("PMC", colnames(new_df)))){

output$maxpostprob_hist <- renderPlot({
output$maxpostprob_hist <- renderPlot({

#Histogram
hist(as.numeric(new_df$PMC),
main = "The estimated proportion of individuals misclassified in the SNP from updog",
xlab = "Proportion of Misclassified Genotypes per SNP",
ylab = "Number of SNPs",
col = "lightblue",
border = "black",
xlim = c(0,1),
breaks = as.numeric(input$hist_bins))
axis(1, at = seq(0, 1, by = .1), labels = rep("", length(seq(0, 1, by = 0.1)))) # Add ticks
#Histogram
hist(as.numeric(new_df$PMC),
main = "The estimated proportion of individuals misclassified in the SNP from updog",
xlab = "Proportion of Misclassified Genotypes per SNP",
ylab = "Number of SNPs",
col = "lightblue",
border = "black",
xlim = c(0,1),
breaks = as.numeric(input$hist_bins))
axis(1, at = seq(0, 1, by = .1), labels = rep("", length(seq(0, 1, by = 0.1)))) # Add ticks

# Add vertical lines
abline(v = mean(as.numeric(new_df$PMC)), col = "red", lty = 2) # Mean line
abline(v = median(as.numeric(new_df$PMC)), col = "green", lty = 2) # Median line
abline(v = quantile(as.numeric(new_df$PMC), 0.95), col = "blue", lty = 2)
# Add vertical lines
abline(v = mean(as.numeric(new_df$PMC)), col = "red", lty = 2) # Mean line
abline(v = median(as.numeric(new_df$PMC)), col = "green", lty = 2) # Median line
abline(v = quantile(as.numeric(new_df$PMC), 0.95), col = "blue", lty = 2)
legend("topright", legend=c("mean", "median", "quantile"),
col=c("red", "green","blue"), lty=2, cex=0.8)

})
})
}

#Missing data
output$missing_snp_hist <- renderPlot({
Expand All @@ -530,7 +586,8 @@ mod_Filtering_server <- function(id){
abline(v = mean(as.numeric(filtering_files$snp_miss_df)), col = "red", lty = 2) # Mean line
abline(v = median(as.numeric(filtering_files$snp_miss_df)), col = "green", lty = 2) # Median line
abline(v = quantile(as.numeric(filtering_files$snp_miss_df), 0.95), col = "blue", lty = 2)

legend("topright", legend=c("mean", "median", "quantile"),
col=c("red", "green","blue"), lty=2, cex=0.8)
})

output$missing_sample_hist <- renderPlot({
Expand All @@ -550,7 +607,8 @@ mod_Filtering_server <- function(id){
abline(v = mean(as.numeric(filtering_files$sample_miss_df)), col = "red", lty = 2) # Mean line
abline(v = median(as.numeric(filtering_files$sample_miss_df)), col = "green", lty = 2) # Median line
abline(v = quantile(as.numeric(filtering_files$sample_miss_df), 0.95), col = "blue", lty = 2)

legend("topright", legend=c("mean", "median", "quantile"),
col=c("red", "green","blue"), lty=2, cex=0.8)
})

##Read Depth (I would prefer that this show the mean depth for SNPs or Samples instead of all loci/sample cells)
Expand Down
34 changes: 31 additions & 3 deletions R/mod_gwas.R
Original file line number Diff line number Diff line change
Expand Up @@ -165,6 +165,13 @@ mod_gwas_server <- function(id){
#I think I can subset the read.GWAS file pheno and fixed categories (data@pheno[,c("trait")]) and data@fixed = phenotype_file[,c("List of fixed traits")]
phenotype_file <- read.csv(input$phenotype_file$datapath, header = TRUE, check.names = FALSE)

# Remove empty lines
rm.empty <- which(apply(phenotype_file, 1, function(x) all(is.na(x) | x == "")))
if(length(rm.empty) > 0){
warning(paste("Removing", length(rm.empty),"empty lines"))
phenotype_file <- phenotype_file[-rm.empty,]
}

ids <- colnames(phenotype_file)[1]
traits <- input$trait_info
fixed <- input$fixed_info
Expand Down Expand Up @@ -204,9 +211,6 @@ mod_gwas_server <- function(id){
#Save new phenotype file with selected traits and fixed effects
write.csv(phenotype_file, file = temp_pheno_file, row.names = FALSE)

#Remove the phenotype_file from memory
rm(phenotype_file)

#Status
updateProgressBar(session = session, id = "pb_gwas", value = 5, title = "Upload Complete: Now Formatting GWASpoly Data")

Expand All @@ -215,6 +219,8 @@ mod_gwas_server <- function(id){

#Geno.file conversion if needed
if (grepl("\\.csv$", file_path)) {
#TODO: Add check for matches of sample names in genotype and phenotype data

data <- read.GWASpoly(ploidy= ploidy, pheno.file= temp_pheno_file, geno.file=input$gwas_file$datapath,
format="numeric", n.traits=length(traits), delim=",") #only need to change files here

Expand All @@ -231,6 +237,28 @@ mod_gwas_server <- function(id){
class(geno_mat) <- "numeric"
info <- data.frame(vcf@fix)
gpoly_df <- cbind(info[,c("ID","CHROM","POS")], geno_mat)

if(!any(colnames(gpoly_df) %in% phenotype_file$Sample_ID)) {
shinyalert(
title = "Samples ID do not match",
text = paste("Check if passport/phenotype files have same sample ID as the VCF/genotype file."),
size = "s",
closeOnEsc = TRUE,
closeOnClickOutside = FALSE,
html = TRUE,
type = "error",
showConfirmButton = TRUE,
confirmButtonText = "OK",
confirmButtonCol = "#004192",
showCancelButton = FALSE,
animation = TRUE
)

}
validate(
need(any(colnames(gpoly_df) %in% phenotype_file$Sample_ID), "The selected traits must be numerical.")
)

write.csv(gpoly_df, file = temp_geno_file, row.names = FALSE)

data <- read.GWASpoly(ploidy= ploidy, pheno.file= temp_pheno_file, geno.file=temp_geno_file,
Expand Down
12 changes: 12 additions & 0 deletions R/utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -280,3 +280,15 @@ posdefmat <- function(mat) {
}
return(g)
}

# Function to split INFO column and expand it into multiple columns
split_info_column <- function(info) {
# Split the INFO column by semicolon
info_split <- str_split(info, ";")[[1]]

# Create a named list by splitting each element by equals sign
info_list <- set_names(map(info_split, ~ str_split(.x, "=")[[1]][2]),
map(info_split, ~ str_split(.x, "=")[[1]][1]))

return(info_list)
}
Loading
Loading