This project implements a quantum-inspired cognitive architecture using Python. It aims to model complex cognitive processes using quantum-inspired algorithms to investigate the emergence of consciousness or intelligence as a complex system phenomenon.
- Quantum-inspired neural networks
- Basic version
- Efficient version
- Flexible version
- Enhanced version
- Unified version (current)
- Modular cognitive architecture including:
- Perception Module
- Attention Module
- Memory Module
- Reasoning Module
- Action Selection Module
- Real-time processing framework
- Multi-modal input system (audio, keyboard, mouse, screenshot)
- Extensive printing with logging levels
- Python 3.8+
- NumPy
- SciPy
- Pillow (PIL)
- PyAudio
- pynput
- mss
-
Clone the repository:
git clone https://github.com/BjornKennethHolmstrom/QuInCA.git cd QuInCA
-
Create a virtual environment:
python -m venv quantum_cognitive_env source quantum_cognitive_env/bin/activate
-
Install the required packages:
pip install numpy scipy pillow pyaudio pynput mss
Run the main script:
python main.py
main.py
: Entry point of the applicationinput_system.py
: Handles multi-modal inputreal_time_framework.py
: Manages real-time processingquantum_inspired_lib/
: Contains quantum-inspired neural network implementationscognitive_modules/
: Contains individual cognitive module implementations
Contributions are welcome! Please feel free to submit a Pull Request.
This project is licensed under a custom license, see LICENSE.md