Skip to content

Rémi Bardenet

rbardenet edited this page Jun 15, 2015 · 5 revisions

On MCMC methods for tall data

The slides are a subset of the following preprint http://arxiv.org/abs/1505.02827

Markov chain Monte Carlo methods are often deemed too computationally intensive to be of any practical use for big data applications, and in particular for inference on datasets containing a large number n of individual data points, also known as tall datasets. In scenarios where data are assumed independent, various approaches to scale up the Metropolis-Hastings algorithm in a Bayesian inference context have been recently proposed in machine learning and computational statistics. These approaches can be grouped into two categories: divide-and-conquer approaches and, subsampling-based algorithms. In this talk, I will first review the existing literature, commenting on the underlying assumptions and theoretical guarantees of each method. Second, by leveraging our understanding of these limitations, I will present an original subsampling-based approach which samples from a distribution provably close to the posterior distribution of interest, yet can require less than O(n) data point likelihood evaluations at each iteration for certain statistical models in favourable scenarios. Finally, we have only been able so far to propose subsampling-based methods which display good performance in scenarios where the Bernstein-von Mises approximation of the target posterior distribution is excellent. It remains an open challenge to develop such methods in scenarios where the Bernstein-von Mises approximation is poor.

Joint work w/ Arnaud Doucet and Chris Holmes, Univ. Oxford.

Clone this wiki locally