Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Data] add graph_store & feature_store #215

Merged
merged 4 commits into from
Jul 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 25 additions & 0 deletions examples/database/graph_store/prepare_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
from gammagl.utils import mask_to_index
from gammagl.datasets import Reddit
import tensorlayerx as tlx
import numpy as np
from gdbi.ggl import Neo4jFeatureStore, Neo4jGraphStore

dataset = Reddit('')
graph = dataset[0]

train_idx = tlx.convert_to_numpy(mask_to_index(graph.train_mask))
val_idx = tlx.convert_to_numpy(mask_to_index(graph.val_mask))
test_idx = tlx.convert_to_numpy(mask_to_index(graph.test_mask))

np.savez('idx.npz', train_idx=train_idx, val_idx=val_idx, test_idx=test_idx)

uri = 'bolt://localhost:7687'
user_name= 'neo4j'
password= 'neo4j'

feature_store = Neo4jFeatureStore(uri=uri, user_name=user_name, password=password)
graph_store = Neo4jGraphStore(uri=uri, user_name=user_name, password=password)

feature_store['reddit_node', 'x', tlx.arange(start=0, limit=graph.x.shape[0])] = graph.x
feature_store['reddit_node', 'y', tlx.arange(start=0, limit=graph.x.shape[0])] = graph.y
graph_store['reddit_edge', 'coo'] = graph.edge_index
134 changes: 134 additions & 0 deletions examples/database/graph_store/reddit_sage_trainer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# os.environ['TL_BACKEND'] = 'torch'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

from gammagl.utils import mask_to_index
from tensorlayerx.model import WithLoss, TrainOneStep
from tqdm import tqdm
import tensorlayerx as tlx
import argparse
from gammagl.loader.neighbor_sampler import NeighborSampler
from gammagl.models import GraphSAGE_Sample_Model
import numpy as np
from gdbi.ggl import Neo4jFeatureStore, Neo4jGraphStore

class SemiSpvzLoss(WithLoss):
def __init__(self, net, loss_fn):
super(SemiSpvzLoss, self).__init__(backbone=net, loss_fn=loss_fn)

def forward(self, data, y):
logits = self.backbone_network(data['x'], data['subgs'])
loss = self._loss_fn(logits, tlx.gather(data['y'], data['dst_node']))
return loss


def calculate_acc(logits, y, metrics):
"""
Args:
logits: node logits
y: node labels
metrics: tensorlayerx.metrics

Returns:
rst
"""

metrics.update(logits, y)
rst = metrics.result()
metrics.reset()
return rst


def main(args):
uri = 'bolt://localhost:7687'
user_name= 'neo4j'
password= 'neo4j'

feature_store = Neo4jFeatureStore(uri=uri, user_name=user_name, password=password)
graph_store = Neo4jGraphStore(uri=uri, user_name=user_name, password=password)

edge_index = graph_store['reddit_edge', 'coo']

with np.load('idx.npz') as data:
train_idx = tlx.convert_to_tensor(data['train_idx'])
val_idx = tlx.convert_to_tensor(data['val_idx'])
test_idx = tlx.convert_to_tensor(data['test_idx'])
train_loader = NeighborSampler(edge_index=edge_index,
node_idx=train_idx,
sample_lists=[25, 10], batch_size=2048, shuffle=True, num_workers=0)

val_loader = NeighborSampler(edge_index=edge_index,
node_idx=val_idx,
sample_lists=[-1], batch_size=2048 * 2, shuffle=False, num_workers=0)
test_loader = NeighborSampler(edge_index=edge_index,
node_idx=test_idx,
sample_lists=[-1], batch_size=2048 * 2, shuffle=False, num_workers=0)


net = GraphSAGE_Sample_Model(in_feat=602,
hid_feat=args.hidden_dim,
out_feat=41,
drop_rate=args.drop_rate,
num_layers=args.num_layers)
optimizer = tlx.optimizers.Adam(args.lr)
metrics = tlx.metrics.Accuracy()
train_weights = net.trainable_weights

loss_func = SemiSpvzLoss(net, tlx.losses.softmax_cross_entropy_with_logits)
train_one_step = TrainOneStep(loss_func, optimizer, train_weights)

y = feature_store['reddit_node', 'y', tlx.arange(start=0, limit=232965)]
y = tlx.reshape(tlx.cast(y, dtype=tlx.int64), (-1,))

for epoch in range(args.n_epoch):
pbar = tqdm(total=int(len(train_loader.dataset)))
pbar.set_description(f'Epoch {epoch:02d}')
for dst_node, n_id, adjs in train_loader:
net.set_train()
# input : sampled subgraphs, sampled node's feat
data = {"x": feature_store['reddit_node', 'x', n_id],
"y": y,
"dst_node": dst_node,
"subgs": adjs}
# label is not used
train_loss = train_one_step(data, tlx.convert_to_tensor([0]))
pbar.update(len(dst_node))
print("Epoch [{:0>3d}] ".format(epoch + 1) + " train loss: {:.4f}".format(train_loss.item()))

logits = net.inference(x, val_loader, data['x'])
if tlx.BACKEND == 'torch':
val_idx = val_idx.to(data['x'].device)
val_logits = tlx.gather(logits, val_idx)
val_y = tlx.gather(data['y'], val_idx)
val_acc = calculate_acc(val_logits, val_y, metrics)

logits = net.inference(x, test_loader, data['x'])
test_logits = tlx.gather(logits, test_idx)
test_y = tlx.gather(data['y'], test_idx)
test_acc = calculate_acc(test_logits, test_y, metrics)

print("val acc: {:.4f} || test acc{:.4f}".format(val_acc, test_acc))


if __name__ == '__main__':
# parameters setting
parser = argparse.ArgumentParser()
parser.add_argument("--lr", type=float, default=0.0005, help="learnin rate")
parser.add_argument("--n_epoch", type=int, default=50, help="number of epoch")
parser.add_argument("--hidden_dim", type=int, default=256, help="dimention of hidden layers")
parser.add_argument("--drop_rate", type=float, default=0.8, help="drop_rate")
parser.add_argument("--num_layers", type=int, default=2)
parser.add_argument("--l2_coef", type=float, default=0., help="l2 loss coeficient")
parser.add_argument('--dataset', type=str, default='reddit', help='dataset')
parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset")
# parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model")
parser.add_argument("--gpu", type=int, default=-1)

args = parser.parse_args()
if args.gpu >= 0:
tlx.set_device("GPU", args.gpu)
else:
tlx.set_device("CPU")

main(args)
6 changes: 6 additions & 0 deletions gammagl/data/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
from .in_memory_dataset import InMemoryDataset
from .extract import extract_zip, extract_tar
from .utils import global_config_init
from .feature_store import FeatureStore, TensorAttr
from .graph_store import GraphStore, EdgeAttr

__all__ = [
'BaseGraph',
Expand All @@ -18,6 +20,10 @@
'extract_zip',
'extract_tar',
'global_config_init',
'FeatureStore',
'TensorAttr',
'GraphStore',
'EdgeAttr',
]

classes = __all__
Loading
Loading