For any issue please contact us at [email protected].
Authors:
Chapter Authors:
Contributors:
If you find this book useful in your research work, please consider citing:
@InProceedings{MDLH,
author = {Raviv, Avraham and Erlihson, Mike},
booktitle = {Machine and Deep learning in Hebrew},
year = {2021}
}
-
1.1.1. The Basic Concept
-
1.1.2. Data, Tasks and Learning
-
1.2.1. Linear Algebra
-
1.2.2. Calculus
-
1.2.3. Probability
-
2.1.1. Support Vector Machines (SVM)
-
2.1.2. Naïve Bayes
-
2.1.3. K-nearest neighbors (K-NN)
-
2.1.4. Quadratic\Linear Discriminant Analysis (QDA\LDA)
-
2.1.5. Decision Trees
-
2.2.1. K-means
-
2.2.2. Mixture Models
-
2.2.3. Expectation–maximization (EM)
-
2.2.4. Hierarchical Clustering
-
2.2.5. Local Outlier Factor
-
2.3.1. Principal Components Analysis (PCA)
-
2.3.2. t-distributed Stochastic Neighbor Embedding (t-SNE)
-
2.3.3. Uniform Manifold Approximation and Projection (UMAP)
-
2.4.1. Introduction to Ensemble Learning
-
2.4.2. Bagging
-
2.4.3. Boosting
-
3.1.1. The Basic Concept
-
3.1.2. Gradient Descent
-
3.1.3. Regularization and Cross Validation
-
3.1.4. Linear Regression as Classifier
-
3.2.1. Logistic Regression
-
3.2.2. Cross Entropy and Gradient Descent
-
3.2.3. Optimization
-
3.2.4. SoftMax Regression – Multiclass Logistic Regression
-
3.2.5. SoftMax Regression as Neural Network
-
4.1.1. From a Single Neuron to Deep Neural Network
-
4.1.2. Activation Function
-
4.1.3. Xor
-
4.2.1. Computational Graphs
-
4.2.2. Forward and Backward propagation
-
4.2.3. Back Propagation and Stochastic Gradient Descent
-
4.3.1. Data Normalization
-
4.3.2. Weight Initialization
-
4.3.3. Batch Normalization
-
4.3.4. Mini Batch
-
4.3.5. Gradient Descent Optimization Algorithms
-
4.4.1. Regularization
-
4.4.2. Weight Decay
-
4.4.3. Model Ensembles and Drop Out
-
4.4.4. Data Augmentation
-
5.1.1. From Fully-Connected Layers to Convolutions
-
5.1.2. Padding, Stride and Dilation
-
5.1.3. Pooling
-
5.1.4. Training
-
5.1.5. Convolutional Neural Networks (LeNet)
-
5.2.1. AlexNet
-
5.2.2. VGG
-
5.2.3. GoogleNet
-
5.2.4. Residual Networks (ResNet)
-
5.2.5. Densely Connected Networks (DenseNet)
-
5.2.6. U-Net
-
5.2.7. Transfer Learning
-
6.1.1. Recurrent Neural Networks
-
6.1.2. Learning Parameters
-
6.2.1. Long Short-Term Memory (LSTM)
-
6.2.2. Gated Recurrent Units (GRU)
-
6.2.3. Deep RNN
-
6.2.4. Bidirectional RNN
-
6.2.5. Sequence to Sequence Learning
-
7.1.1. Dimensionality Reduction
-
7.1.2. Autoencoders (AE)
-
7.1.3. Variational AutoEncoders (VAE)
-
7.2.1. Generator and Discriminator
-
7.2.2. DCGAN
-
7.2.3. Conditional GAN (cGAN)
-
7.2.4. Pix2Pix
-
7.2.5. CycleGAN
-
7.2.6. Progressively Growing (ProGAN)
-
7.2.7. StyleGAN
-
7.2.8. Wasserstein GAN
-
7.3.1. PixelRNN
-
7.3.2. PixelCNN
-
7.3.3. Gated PixelCNN
-
7.3.4. PixelCNN++
-
8.1.1. Attention in Seq2Seq Models
-
8.1.2. Bahdanau Attention and Luong Attention
-
8.2.1. Positional Encoding
-
8.2.2. Self-Attention Layer
-
8.2.3. Multi Head Attention
-
8.2.4. Transformer End to End
-
8.2.5. Transformer Applications
-
9.1.1. Introduction to Object Detection
-
9.1.2. R-CNN
-
9.1.3. You Only Look Once (YOLO)
-
9.1.4. Single Shot Detector (SSD)
-
9.1.5 Spatial Pyramid Pooling (SPP-net)
-
9.1.6. Feature Pyramid Networks
-
9.1.7. Deformable Convolutional Networks
-
9.1.8. DE:TR: Object Detection with Transformers
-
9.2.1. Semantic Segmentation Vs. Instance Segmentation
-
9.2.2. SegNet neural network
-
9.2.3. Atrous Convolutions
-
9.2.4. Atrous Spatial Pyramidal Pooling
-
9.2.5. Conditional Random Fields usage for improving final output
-
9.2.6. See More Than Once -- Kernel-Sharing Atrous Convolution
-
9.3.1. Face Recognition
-
9.3.2. Pose Estimation
-
9.5.1. The Problem
-
9.5.2 Metric Learning
-
9.5.3. Meta-Learning (Learning-to-Learn)
-
9.5.4. Data Augmentation
-
9.5.5. Zero-Shot Learning
-
10.1.1. Basic Language Models
-
10.1.2. Word Representation (Vectors) and Word Embeddings
-
10.1.3. COntextual Embeddings
-
11.1.1. Markov Decision Process (MDP) and RL
-
11.1.2. Planning
-
11.1.3. Learning Algorithms
-
11.2.1. Monte-Carlo (MC) Policy Evaluation
-
11.2.2. Temporal Difference (TD) – Bootstrapping
-
11.2.3. TD(λ)
-
11.3.1. SARSA - on-policy TD control
-
11.3.2. Q-Learning
-
11.3.3. Function Approximation
-
11.3.4. Policy-Based RL
-
11.3.5. Actor-Critic
-
11.4.1. Known Model – Dyna algorithm
-
11.4.2. Known Model – Tree Search
-
11.4.3. Planning for Continuous Action Space
-
11.5.1. N-armed bandits
-
11.5.2. Full MDP
-
11.6.1. Imitation Learning
-
11.6.2. Inverse RL
-
12.1.1. Represent Data as a Graph
-
12.1.2. Tasks on Graphs
-
12.1.3. The challenge of learning graphs
כל הזכויות שמורות Ⓒ