Commands for training different experiments
python train.py --name circles --env-name Circles-v0 --sog-gail --sog-gail-coef 0.1 --latent-optimizer ohs --latent-dim 3 --result-interval 10 --save-interval 5 --gpu-id 2 --adjust-scale --shared --seed 0
python train.py --name ant-fwd-back --env-name AntDir-v0 --mujoco --sog-gail --sog-gail-coef 1 --latent-optimizer ohs --latent-dim 2 --result-interval 10 --save-interval 5 --gpu-id 4 --shared --seed 0
python train.py --name ant-dir-6 --env-name AntDir-v0 --mujoco --sog-gail --sog-gail-coef 1 --latent-optimizer ohs --latent-dim 6 --result-interval 10 --save-interval 5 --expert-filename trajs_antdir6.pt --gpu-id 0 --shared --seed 0
python train.py --name halfcheetahdir --env-name HalfCheetahDir-v0 --mujoco --sog-gail --sog-gail-coef 1 --latent-optimizer ohs --latent-dim 2 --result-interval 10 --save-interval 5 --gpu-id 2 --shared --seed 0
python train.py --name halfcheetahvel --env-name HalfCheetahVel-v0 --mujoco --sog-gail --sog-gail-coef 1 --latent-optimizer bcs --block-size 1 --latent-dim 1 --result-interval 10 --save-interval 5 --gpu-id 3 --shared --seed 0
- Python 3
- PyTorch
- OpenAI baselines
In order to install requirements, follow:
# PyTorch
conda install pytorch torchvision -c soumith
# Baselines for Atari preprocessing
git clone https://github.com/openai/baselines.git
cd baselines
pip install -e .
# Other requirements
pip install -r requirements.txt
TODO: review the installation requirements above
- Modify
jobs.xlsx
- Generate jobs as desired, e.g.
python generate_tmux_yaml.py --num-seeds 4 --job-ids 0,1 --task 'benchmark'
- Run the jobs:
tmuxp load run_all.yaml
You can download a set of expert datasets from this Google Drive directory and put them in gail_experts
sub-directory.
Each file consists of torch tensors for states and actions of trajectories, as well as modes for each trajectory.
- the extra
DiagGaussian
+ theCirclesMLP
module to be moved out of the main code base - take care of all TODO tags!