Skip to content

AgentSched: A scheduler for LLM-based agents that optimizes message routing through load balancing, connection pooling, and dynamic scaling to improve concurrent processing and efficient communication with LLMs.

License

Notifications You must be signed in to change notification settings

Appointat/AgentSched

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

85 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AgentSched

AgentSched is a high-performance scheduler designed for LLM-based agents, optimizing message routing through load balancing, connection pooling, and dynamic scaling to improve concurrent processing and efficient communication with Large Language Models (LLMs).

Main Features

  • Intelligent Load Balancing: Efficiently distribute workload across multiple agents and LLMs.
  • Optimized Connection Pooling: Manage and reuse connections to maximize resource utilization.
  • Dynamic Scaling: Automatically adjust resources based on demand.
  • High Concurrency Support: Handle multiple agent requests simultaneously.
  • Efficient Message Routing: Ensure messages are delivered to the appropriate LLM quickly and reliably.
  • LLM Integration Optimization: Streamline the process of communicating with various LLM providers.

Architecture

Our system architecture leverages Kafka for robust message handling and Kubernetes for scalable deployments:

%%{init: {'theme': 'base', 'themeVariables': { 'background': '#ffffff', 'primaryColor': '#f0f0f0', 'primaryTextColor': '#000000' }}}%%

graph TD
    classDef default fill:#f0f0f0,stroke:#333,stroke-width:1px,color:#000000;
    classDef kafka fill:#e6f3e6,stroke:#4caf50,stroke-width:2px,color:#000000;
    classDef component fill:#e6f2ff,stroke:#2196f3,stroke-width:2px,color:#000000;
    classDef agent fill:#fff0e6,stroke:#ff9800,stroke-width:2px,color:#000000;
    classDef groupbox fill:none,stroke:#999,stroke-width:2px,stroke-dasharray: 5 5;

    subgraph ExternalSystems [External Systems]
        ExtUsers[External Users]
        LoadBal[Load Balancer]
    end

    subgraph AgentLayer [Agent Layer]
        AgentDist{Agent Distributor}
        PrimaryAgent[Primary Agent]
        ClonedAgents[Cloned Agents]
    end

    subgraph KafkaInfra [Kafka Infrastructure]
        MsgBroker{Message Broker}
        Queue1[Queue 1]
        Queue2[Queue 2]
        Queue3[Queue 3]
        ReplyQueue[Reply Queue]
    end

    subgraph ResourceMgmt [Resource Management]
        Scheduler[Scheduler]
        ConnPool[Connection Pool]
    end

    subgraph LLMLayer [LLM Model Layer]
        ModelDist{Model Distributor}
        VLLM1[vllm Instance 1]
        GPT4T[GPT-4 Turbo]
        VLLM2[vllm Instance 2]
    end

    subgraph ResultHandling [Result Handling]
        ResultProc[Result Processor]
        ResultsQueue[Results Queue]
        OutputHandler[Output Handler]
    end

    %% Main flow
    ExtUsers -->|Requests| LoadBal
    LoadBal -->|Distribute| AgentDist
    AgentDist --> PrimaryAgent & ClonedAgents
    PrimaryAgent & ClonedAgents -->|Produce| MsgBroker
    MsgBroker --> Queue1 & Queue2 & Queue3
    Queue1 & Queue2 & Queue3 -->|Consume| Scheduler
    Scheduler <--> ConnPool
    ConnPool -->|Assign| ModelDist
    ModelDist --> VLLM1 & GPT4T & VLLM2
    VLLM1 & GPT4T & VLLM2 -->|Results| ResultProc
    ResultProc --> ResultsQueue
    ResultsQueue --> OutputHandler
    OutputHandler -->|Return| ExtUsers

    %% Kafka Request-Reply
    PrimaryAgent & ClonedAgents -.->|Request| MsgBroker
    MsgBroker -.->|Reply| ReplyQueue
    ReplyQueue -.->|Consume| PrimaryAgent & ClonedAgents

    %% Admin and Monitoring
    AdminClient[Admin Client] -.->|Manage| MsgBroker

    subgraph Monitoring [Monitoring & Logging]
        MonitorSys[Monitoring System]
    end

    MonitorSys -.->|Monitor| ExternalSystems & AgentLayer & KafkaInfra & ResourceMgmt & LLMLayer & ResultHandling

    %% Styling
    class MsgBroker kafka;
    class LoadBal,Scheduler,ConnPool,ResultProc,OutputHandler component;
    class AgentDist,PrimaryAgent,ClonedAgents agent;
    class ExternalSystems,AgentLayer,KafkaInfra,ResourceMgmt,LLMLayer,ResultHandling,Monitoring groupbox;
Loading
graph TB
    subgraph Scheduler[Scheduler]
        direction TB
        C[Consumer]
        LB[Load Balancer]
        P[Producer]
        direction LR
        C --> LB
        LB --> P
    end

    subgraph KafkaCluster[Kafka Cluster]
        RT[Request Topics]
        RST[Response Topic]
    end

    subgraph LLMPool[LLM Pool]
        LLM1[LLM Model 1]
        LLM2[LLM Model 2]
        LLM3[LLM Model 3]
    end

    Agent1[Agent 1] -->|1-Send Request| RT
    Agent2[Agent 2] -->|1-Send Request| RT
    RT -->|2-Consume| C
    LB -->|3-Assign Task| LLMPool
    LLMPool -->|4-Return Result| LB
    P -->|5-Produce Response| RST
    RST -->|6-Consume| Agent1
    RST -->|6-Consume| Agent2

    Scheduler -.->|Manage| KafkaCluster
    Scheduler -.->|Manage| LLMPool

    style Scheduler fill:#f9f,stroke:#333,stroke-width:4px
    style KafkaCluster fill:#bfe,stroke:#333,stroke-width:2px
    style LLMPool fill:#ffe,stroke:#333,stroke-width:2px
Loading

AgentSched

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/agentsched.git
cd agentsched
  1. Install the required dependencies:
poetry shell
poetry install

Configuration

Update the following variables in the project as needed:

BOOTSTRAP_SERVERS: Kafka bootstrap servers
INPUT_TOPICS: List of input topics for different priorities
OUTPUT_TOPIC: Topic for output messages
SGLANG_BASE_URL: Base URL for the SGLang server
LLM_API_KEY: API key for LLM access (if required)

Quick Start

import random
import time
from threading import Thread
from typing import Dict, List
from uuid import uuid4

from confluent_kafka import KafkaException  # type: ignore[import]
from confluent_kafka.admin import AdminClient, NewTopic  # type: ignore[import]

from agentsched.kafka_server.consumer import Consumer
from agentsched.kafka_server.producer import Producer
from agentsched.load_balancing.scheduler import Scheduler, SchedulerConfig
from agentsched.types import Message, Priority, TaskType

# Kafka configuration
BOOTSTRAP_SERVERS = "localhost:9092"
INPUT_TOPICS = ["high_priority", "medium_priority", "low_priority"]
OUTPUT_TOPIC = "results"
SGLANG_BASE_URL = "http://127.0.0.1:30000/v1"
LLM_API_KEY = "EMPTY"

# Global dictionary to store pending requests
pending_requests: Dict[str, Message] = {}


def create_topics(
    bootstrap_servers: str,
    topics: List[str],
    num_partitions: int = 1,
    replication_factor: int = 1,
):
    """Create Kafka topics if they don't exist."""
    admin_client = AdminClient({"bootstrap.servers": bootstrap_servers})

    new_topics = [
        NewTopic(
            topic,
            num_partitions=num_partitions,
            replication_factor=replication_factor,
        )
        for topic in topics
    ]
    fs = admin_client.create_topics(new_topics)

    for topic, f in fs.items():
        try:
            f.result()  # the result itself is None
            print(f"Topic {topic} created")
        except KafkaException as e:
            if "already exists" in str(e):
                print(f"Topic {topic} already exists")
            else:
                raise KafkaException(f"Failed to create topic {topic}: {e}") from e


def simulate_input_messages(producer: Producer, num_messages: int = 5):
    """Simulate input messages to the system."""

    prompts = [
        "Summarize the main points of climate change.",
        "Explain the concept of artificial intelligence.",
        "Describe the process of photosynthesis.",
        "What are the key features of a democratic government?",
        "How does the internet work?",
    ]

    for _ in range(num_messages):
        correlation_id = str(uuid4())

        message = Message(
            id=f"task_{random.randint(1000, 9999)}",
            task_type=random.choice(list(TaskType)).value,
            priority=random.choice(list(Priority)).value,
            content=random.choice(prompts),
            token_count=random.randint(10, 200),
            correlation_id=correlation_id,
        )
        topic = f"{message.priority}_priority"
        headers = {"correlation_id": correlation_id}
        producer.produce(value=message.model_dump(), topic=topic, headers=headers)
        print(f"[Demo] Produced message: {message}")

        # Store the pending request
        pending_requests[correlation_id] = message

        time.sleep(0.5)  # simulate some delay between messages


def send_response_to_agent(message: Message):
    """Handle the response received for a produced message."""
    correlation_id = message.correlation_id
    if correlation_id in pending_requests:
        original_request = pending_requests.pop(correlation_id)
        print(f"Original content: {original_request.content}")
        print(f"Response: {message.content}")
    else:
        print(f"Received response for unknown correlation ID: {correlation_id}")


def process_output(consumer: Consumer):
    """Process output messages from the system."""
    while True:
        try:
            message = consumer.consume(timeout=1.0)
            if message:
                print("\n[Demo] Received output message:")
                print(f"received message for correlation ID: {message.correlation_id}")
                print(f"Task ID: {message.id}")
                print(f"Model: {message.model_id}")
                print(f"Status: {message.status}")
                print(f"Content: {message.content}")

                # Handle the response
                send_response_to_agent(message)
                print("-" * 50)
        except KafkaException as e:
            print(f"Error processing output: {e}")
            time.sleep(1)  # wait a bit before retrying
def main():
    """Main function to run the system demo."""
    # Create Kafka topics
    create_topics(BOOTSTRAP_SERVERS, INPUT_TOPICS + [OUTPUT_TOPIC])

    # Initialize components
    input_producer = Producer(
        bootstrap_servers=BOOTSTRAP_SERVERS,
    )
    output_consumer = Consumer(
        bootstrap_servers=BOOTSTRAP_SERVERS,
        group_id="output-consumer-group",
        auto_offset_reset="latest",
    )
    output_consumer.subscribe(["results"])

    scheduler = Scheduler(
        SchedulerConfig(
            bootstrap_servers=BOOTSTRAP_SERVERS,
            input_topics=INPUT_TOPICS,
            output_topic=OUTPUT_TOPIC,
            max_workers=10,
        )
    )

    # Add LLM models
    scheduler.add_llm_model(
        "gpt-3.5",
        capacity=5,
        supported_tasks=[
            TaskType.TEXT_GENERATION,
            TaskType.DATA_PROCESSING,
        ],
        base_url=SGLANG_BASE_URL,
        api_key=LLM_API_KEY,
    )
    scheduler.add_llm_model(
        "gpt-4-turbo",
        capacity=3,
        supported_tasks=[
            TaskType.TEXT_GENERATION,
            TaskType.IMAGE_ANALYSIS,
            TaskType.DATA_PROCESSING,
        ],
        base_url=SGLANG_BASE_URL,
        api_key=LLM_API_KEY,
    )
    scheduler.add_llm_model(
        "gpt-4-o",
        capacity=10,
        supported_tasks=[
            TaskType.TEXT_GENERATION,
        ],
        base_url=SGLANG_BASE_URL,
        api_key=LLM_API_KEY,
    )

    # Start threads
    input_thread = Thread(target=simulate_input_messages, args=(input_producer,))
    output_thread = Thread(target=process_output, args=(output_consumer,))
    scheduler_thread = Thread(target=scheduler.run)

    input_thread.start()
    output_thread.start()
    scheduler_thread.start()

    # Wait for input simulation to complete
    input_thread.join()

    # Allow some time for processing
    time.sleep(15)

    # Print any remaining pending requests
    if pending_requests:
        print("Requests without responses:")
        for corr_id, request in pending_requests.items():
            print(f"  Correlation ID: {corr_id}, Request ID: {request.id}")

    # Print model stats
    print("\nModel Stats:")
    for model_id, stats in scheduler.get_model_stats().items():
        print(f"Model {model_id}:")
        print(f"  Current load: {stats.current_load}")
        print(f"  Total processed tasks: {stats.total_processed_tasks}")
        print(f"  Average processing time: {stats.average_processing_time:.2f} s")

    # Cleanup
    scheduler.close()
    input_producer.close()
    output_consumer.close()

    print("Demo completed.")


if __name__ == "__main__":
    main()

Configuration

AgentSched uses a YAML configuration file. Here's a sample configuration:

kafka:
  bootstrap_servers:
    - "localhost:9092"
  topics:
    - "agent_messages"

agents:
  - id: "agent1"
    model: "gpt-3.5-turbo"
  - id: "agent2"
    model: "gpt-4"

scaling:
  min_agents: 2
  max_agents: 10
  scaling_factor: 1.5

load_balancing:
  strategy: "round_robin"

connection_pool:
  max_connections: 100
  timeout: 30

For more detailed usage instructions, please refer to our documentation.

Contributing

We welcome contributions! Please see our Contributing Guide for more details.

License

AgentSched is released under the MIT License. See the LICENSE file for more details.

Contact

If you have any questions or feedback, please open an issue on this GitHub repository.

About

AgentSched: A scheduler for LLM-based agents that optimizes message routing through load balancing, connection pooling, and dynamic scaling to improve concurrent processing and efficient communication with LLMs.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published