Skip to content

Commit

Permalink
Add a Math.inv function that inverse a number in Z/nZ (OpenZeppelin#4839
Browse files Browse the repository at this point in the history
)

Co-authored-by: ernestognw <[email protected]>
  • Loading branch information
Amxx and ernestognw authored Jan 24, 2024
1 parent e5f02bc commit e86bb45
Show file tree
Hide file tree
Showing 4 changed files with 139 additions and 4 deletions.
5 changes: 5 additions & 0 deletions .changeset/cool-mangos-compare.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
---
'openzeppelin-solidity': minor
---

`Math`: add an `invMod` function to get the modular multiplicative inverse of a number in Z/nZ.
65 changes: 61 additions & 4 deletions contracts/utils/math/Math.sol
Original file line number Diff line number Diff line change
Expand Up @@ -121,9 +121,10 @@ library Math {
}

/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
Expand Down Expand Up @@ -208,7 +209,7 @@ library Math {
}

/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
Expand All @@ -218,6 +219,62 @@ library Math {
return result;
}

/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;

// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n

// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;

// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;

while (remainder != 0) {
uint256 quotient = gcd / remainder;

(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);

(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}

if (gcd != 1) return 0; // No inverse exists.
return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
}
}

/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
Expand Down Expand Up @@ -258,7 +315,7 @@ library Math {
}

/**
* @notice Calculates sqrt(a), following the selected rounding direction.
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
Expand Down
35 changes: 35 additions & 0 deletions test/utils/math/Math.t.sol
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,41 @@ contract MathTest is Test {
return value * value < ref;
}

// INV
function testInvMod(uint256 value, uint256 p) public {
_testInvMod(value, p, true);
}

function testInvMod2(uint256 seed) public {
uint256 p = 2; // prime
_testInvMod(bound(seed, 1, p - 1), p, false);
}

function testInvMod17(uint256 seed) public {
uint256 p = 17; // prime
_testInvMod(bound(seed, 1, p - 1), p, false);
}

function testInvMod65537(uint256 seed) public {
uint256 p = 65537; // prime
_testInvMod(bound(seed, 1, p - 1), p, false);
}

function testInvModP256(uint256 seed) public {
uint256 p = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff; // prime
_testInvMod(bound(seed, 1, p - 1), p, false);
}

function _testInvMod(uint256 value, uint256 p, bool allowZero) private {
uint256 inverse = Math.invMod(value, p);
if (inverse != 0) {
assertEq(mulmod(value, inverse, p), 1);
assertLt(inverse, p);
} else {
assertTrue(allowZero);
}
}

// LOG2
function testLog2(uint256 input, uint8 r) public {
Math.Rounding rounding = _asRounding(r);
Expand Down
38 changes: 38 additions & 0 deletions test/utils/math/Math.test.js
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ const { PANIC_CODES } = require('@nomicfoundation/hardhat-chai-matchers/panic');

const { Rounding } = require('../../helpers/enums');
const { min, max } = require('../../helpers/math');
const { randomArray, generators } = require('../../helpers/random');

const RoundingDown = [Rounding.Floor, Rounding.Trunc];
const RoundingUp = [Rounding.Ceil, Rounding.Expand];
Expand Down Expand Up @@ -298,6 +299,43 @@ describe('Math', function () {
});
});

describe('invMod', function () {
for (const factors of [
[0n],
[1n],
[2n],
[17n],
[65537n],
[0xffffffff00000001000000000000000000000000ffffffffffffffffffffffffn],
[3n, 5n],
[3n, 7n],
[47n, 53n],
]) {
const p = factors.reduce((acc, f) => acc * f, 1n);

describe(`using p=${p} which is ${p > 1 && factors.length > 1 ? 'not ' : ''}a prime`, function () {
it('trying to inverse 0 returns 0', async function () {
expect(await this.mock.$invMod(0, p)).to.equal(0n);
expect(await this.mock.$invMod(p, p)).to.equal(0n); // p is 0 mod p
});

if (p != 0) {
for (const value of randomArray(generators.uint256, 16)) {
const isInversible = factors.every(f => value % f);
it(`trying to inverse ${value}`, async function () {
const result = await this.mock.$invMod(value, p);
if (isInversible) {
expect((value * result) % p).to.equal(1n);
} else {
expect(result).to.equal(0n);
}
});
}
}
});
}
});

describe('sqrt', function () {
it('rounds down', async function () {
for (const rounding of RoundingDown) {
Expand Down

0 comments on commit e86bb45

Please sign in to comment.