-
Notifications
You must be signed in to change notification settings - Fork 5.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Evaluation] Add summarise_results script for TheAgentCompany benchmark
- Loading branch information
Showing
1 changed file
with
314 additions
and
0 deletions.
There are no files selected for viewing
314 changes: 314 additions & 0 deletions
314
evaluation/benchmarks/the_agent_company/scripts/summarise_results.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,314 @@ | ||
########################################################################################################### | ||
# Adapted from https://github.com/TheAgentCompany/TheAgentCompany/blob/main/evaluation/summarise_results.py | ||
########################################################################################################### | ||
|
||
|
||
import glob | ||
import json | ||
import os | ||
import re | ||
import sys | ||
from typing import Dict, Tuple | ||
|
||
|
||
def calculate_cost(model: str, prompt_tokens: int, completion_tokens: int) -> float: | ||
""" | ||
Calculate the cost of the model call. | ||
""" | ||
if 'claude-3-5-sonnet' in model.lower(): | ||
# https://www.anthropic.com/pricing#anthropic-api, accessed 12/11/2024 | ||
return 0.000003 * prompt_tokens + 0.000015 * completion_tokens | ||
elif 'gpt-4o' in model.lower(): | ||
# https://openai.com/api/pricing/, accessed 12/11/2024 | ||
return 0.0000025 * prompt_tokens + 0.00001 * completion_tokens | ||
elif 'gemini-1.5-pro' in model.lower(): | ||
# https://ai.google.dev/pricing#1_5pro, accessed 12/11/2024 | ||
# assuming prompts up to 128k tokens | ||
cost = 0.00000125 * prompt_tokens + 0.000005 * completion_tokens | ||
if prompt_tokens > 128000: | ||
cost *= 2 | ||
return cost | ||
elif 'gemini-2.0-flash-exp' in model.lower(): | ||
# price unknown for gemini-2.0-flash-exp, assuming same price as gemini-1.5-flash | ||
cost = 0.000000075 * prompt_tokens + 0.0000003 * completion_tokens | ||
if prompt_tokens > 128000: | ||
cost *= 2 | ||
return cost | ||
elif 'qwen2-72b' in model.lower(): | ||
# assuming hosted on Together | ||
# https://www.together.ai/pricing, accessed 12/11/2024 | ||
return 0.0000009 * (prompt_tokens + completion_tokens) | ||
elif 'qwen2p5-72b' in model.lower(): | ||
# assuming hosted on Together | ||
# https://www.together.ai/pricing, accessed 12/14/2024 | ||
return 0.0000012 * (prompt_tokens + completion_tokens) | ||
elif 'llama-v3p1-405b-instruct' in model.lower(): | ||
# assuming hosted on Fireworks AI | ||
# https://fireworks.ai/pricing, accessed 12/11/2024 | ||
return 0.000003 * (prompt_tokens + completion_tokens) | ||
elif 'llama-v3p1-70b-instruct' in model.lower(): | ||
# assuming hosted on Fireworks AI | ||
return 0.0000009 * (prompt_tokens + completion_tokens) | ||
elif 'llama-v3p3-70b-instruct' in model.lower(): | ||
# assuming hosted on Fireworks AI | ||
return 0.0000009 * (prompt_tokens + completion_tokens) | ||
elif 'amazon.nova-pro-v1:0' in model.lower(): | ||
# assuming hosted on Amazon Bedrock | ||
# https://aws.amazon.com/bedrock/pricing/, accessed 12/11/2024 | ||
return 0.0000008 * prompt_tokens + 0.0000032 * completion_tokens | ||
else: | ||
raise ValueError(f'Unknown model: {model}') | ||
|
||
|
||
def analyze_eval_json_file(filepath: str) -> Tuple[int, int]: | ||
""" | ||
Analyze a single eval JSON file and extract the total and result from final_score. | ||
Args: | ||
filepath: Path to the JSON file | ||
Returns: | ||
Tuple containing (total, result) from final_score | ||
""" | ||
try: | ||
with open(filepath, 'r') as f: | ||
data = json.load(f) | ||
|
||
final_score = data.get('final_score', {}) | ||
return (final_score.get('total', 0), final_score.get('result', 0)) | ||
except json.JSONDecodeError as e: | ||
print(f'Error decoding JSON in {filepath}: {e}') | ||
return (0, 0) | ||
except Exception as e: | ||
print(f'Error processing {filepath}: {e}') | ||
return (0, 0) | ||
|
||
|
||
def analyze_traj_json_file(filepath: str) -> Tuple[int, float]: | ||
""" | ||
Analyze a single trajectory JSON file and extract the steps and tokens | ||
for each step. Then estimate the cost based on the tokens and the model type. | ||
Note: this is assuming there's no prompt caching at all. | ||
""" | ||
steps: int = 0 | ||
cost: float = 0.0 | ||
with open(filepath, 'r') as f: | ||
data = json.load(f) | ||
response_id = None | ||
for action in data: | ||
if 'tool_call_metadata' in action: | ||
if action['tool_call_metadata']['model_response']['id'] != response_id: | ||
response_id = action['tool_call_metadata']['model_response']['id'] | ||
else: | ||
# openhands displays the same model response meta data multiple times, when | ||
# a single LLM call leads to multiple actions and observations. | ||
continue | ||
steps += 1 | ||
usage = action['tool_call_metadata']['model_response']['usage'] | ||
model: str = action['tool_call_metadata']['model_response']['model'] | ||
prompt_tokens = usage['prompt_tokens'] | ||
completion_tokens = usage['completion_tokens'] | ||
cost += calculate_cost(model, prompt_tokens, completion_tokens) | ||
|
||
return (steps, cost) | ||
|
||
|
||
def analyze_folder( | ||
folder_path: str, | ||
) -> Tuple[Dict[str, Tuple[int, int]], Dict[str, Tuple[int, float]]]: | ||
""" | ||
Analyze all eval_*.json & traj_*.json files in the specified folder. | ||
Args: | ||
folder_path: Path to the folder containing JSON files | ||
Returns: | ||
dictionaries: | ||
- eval_results: Dictionary with filename as key and (total, result) tuple as value | ||
- traj_results: Dictionary with filename as key and (steps, cost) tuple as value | ||
""" | ||
eval_results = {} | ||
traj_results = {} | ||
|
||
eval_pattern = os.path.join(folder_path, 'eval_*.json') | ||
traj_pattern = os.path.join(folder_path, 'traj_*.json') | ||
|
||
for filepath in glob.glob(eval_pattern): | ||
filename = os.path.basename(filepath) | ||
total, result = analyze_eval_json_file(filepath) | ||
key = re.search(r'eval_(.+)\.json', filename).group(1) | ||
eval_results[key] = (total, result) | ||
|
||
for filepath in glob.glob(traj_pattern): | ||
filename = os.path.basename(filepath) | ||
steps, cost = analyze_traj_json_file(filepath) | ||
key = re.search(r'traj_(.+)\.json', filename).group(1) | ||
traj_results[key] = (steps, cost) | ||
|
||
return eval_results, traj_results | ||
|
||
|
||
def get_task_nature_category(task_name: str) -> str: | ||
""" | ||
Get the nature category of the task. | ||
""" | ||
task_nature = task_name.split('-')[0] | ||
if task_nature.lower() in ['sde', 'pm', 'ds', 'admin', 'hr', 'finance']: | ||
return task_nature | ||
else: | ||
return 'other' | ||
|
||
|
||
def calculate_score(total: int, result: int) -> float: | ||
""" | ||
Calculate the score as a number between 0 and 1. | ||
Formula: score = (result / total) * 0.5 + (result // total) * 0.5 | ||
Explanation: | ||
- (result / total) * 0.5: This is the completion ratio, scaled down to a 0-0.5 range. | ||
- (result // total) * 0.5: This is a binary score indicating whether the task was completed or not. | ||
Args: | ||
total: Total possible points | ||
result: Actual points achieved | ||
Returns: | ||
Score as a number between 0 and 1 | ||
""" | ||
return (result / total * 0.5) + (result // total * 0.5) | ||
|
||
|
||
def is_perfect_completion(total: int, result: int) -> bool: | ||
""" | ||
Check if the task achieved perfect completion. | ||
Args: | ||
total: Total possible points | ||
result: Actual points achieved | ||
Returns: | ||
True if result equals total, False otherwise | ||
""" | ||
return total > 0 and total == result | ||
|
||
|
||
def main(): | ||
if len(sys.argv) != 2: | ||
print('Usage: poetry run python summarise_results.py <folder_path>') | ||
sys.exit(1) | ||
|
||
folder_path = sys.argv[1] | ||
|
||
if not os.path.isdir(folder_path): | ||
print(f"Error: '{folder_path}' is not a valid directory") | ||
sys.exit(1) | ||
|
||
eval_results, traj_results = analyze_folder(folder_path) | ||
|
||
if not eval_results: | ||
print(f'No eval_*.json files found in {folder_path}') | ||
return | ||
|
||
# Create list of results with completion ratios for sorting | ||
detailed_results = [ | ||
( | ||
task_name, | ||
total, | ||
result, | ||
calculate_score(total, result), | ||
is_perfect_completion(total, result), | ||
get_task_nature_category(task_name), | ||
) | ||
for task_name, (total, result) in eval_results.items() | ||
] | ||
|
||
# Sort by score in descending order | ||
detailed_results.sort(key=lambda x: (-x[3], x[0])) | ||
|
||
# Calculate perfect completion stats | ||
perfect_completions = sum( | ||
1 for _, _, _, _, is_perfect, _ in detailed_results if is_perfect | ||
) | ||
|
||
# Print header | ||
print('\n# Evaluation Results Report') | ||
print('\n## Results per File') | ||
print('\n*Sorted by score (⭐ indicates perfect completion)*\n') | ||
|
||
# Print table header | ||
print('| Filename | Total | Result | Score | Steps | Cost |') | ||
print('|----------|--------|---------|-------|-------|------|') | ||
|
||
# Print individual file results | ||
for task_name, total, result, score, is_perfect, task_nature in detailed_results: | ||
perfect_marker = ' ⭐' if is_perfect else '' | ||
print( | ||
f'| {task_name} | {total:,} | {result:,} | {score:.2f}{perfect_marker} | {traj_results[task_name][0]} | {traj_results[task_name][1]:.2f} |' | ||
) | ||
|
||
# Print summary section | ||
print('\n## Summary\n') | ||
print(f'**Tasks Evaluated:** {len(eval_results)}\n') | ||
print( | ||
f'**Perfect Completions:** {perfect_completions}/{len(eval_results)} ({(perfect_completions/len(eval_results)*100):.2f}%)\n' | ||
) | ||
|
||
overall_score = ( | ||
sum(score for _, _, _, score, _, _ in detailed_results) | ||
/ len(detailed_results) | ||
* 100 | ||
) | ||
avg_steps = sum(steps for steps, _ in traj_results.values()) / len(traj_results) | ||
avg_cost = sum(cost for _, cost in traj_results.values()) / len(traj_results) | ||
print(f'**Overall Score:** {overall_score:.2f}%\n') | ||
print(f'**Average Steps:** {avg_steps:.2f}\n') | ||
print(f'**Average Cost (USD):** {avg_cost:.2f}\n') | ||
|
||
# Additional statistics | ||
if detailed_results: | ||
highest_score = max(score for _, _, _, score, _, _ in detailed_results) | ||
lowest_score = min(score for _, _, _, score, _, _ in detailed_results) | ||
median_score = detailed_results[len(detailed_results) // 2][3] | ||
avg_score = sum(score for _, _, _, score, _, _ in detailed_results) / len( | ||
detailed_results | ||
) | ||
|
||
print('\n## Statistics\n') | ||
print('| Metric | Value |') | ||
print('|---------|--------|') | ||
print(f'| Highest Task Score | {highest_score*100:.2f}% |') | ||
print(f'| Lowest Task Score | {lowest_score*100:.2f}% |') | ||
print(f'| Median Task Score | {median_score*100:.2f}% |') | ||
print(f'| Average Task Score | {avg_score*100:.2f}% |') | ||
|
||
# compute avg score per nature category | ||
print('\n## Statistics per Nature Category\n') | ||
print('| Metric | Value |') | ||
print('|---------|--------|') | ||
for task_nature in ['sde', 'pm', 'ds', 'admin', 'hr', 'finance', 'other']: | ||
num_of_tasks = sum( | ||
1 | ||
for _, _, _, _, _, nature_category in detailed_results | ||
if nature_category == task_nature | ||
) | ||
task_nature_score = ( | ||
sum( | ||
score | ||
for _, _, _, score, _, nature_category in detailed_results | ||
if nature_category == task_nature | ||
) | ||
/ num_of_tasks | ||
) | ||
perfect_completions = sum( | ||
1 | ||
for _, _, _, _, is_perfect, nature_category in detailed_results | ||
if nature_category == task_nature and is_perfect | ||
) | ||
print( | ||
f'| Perfect Completions for {task_nature} | {perfect_completions}/{num_of_tasks} ({perfect_completions/num_of_tasks*100:.2f}%) |' | ||
) | ||
print(f'| Average Score for {task_nature} | {task_nature_score*100:.2f}% |') | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |