-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
435036d
commit 9989c9a
Showing
4 changed files
with
320 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
#!=bin/bash | ||
|
||
buildDIR=../../../build | ||
|
||
cd $buildDIR/bin | ||
AMDuProfPcm roofline -X -o ./exaEpi.csv -- ./agent ../../examples/inputs.census | ||
|
||
AMDuProfModelling.py -i ./exaEpi.csv --operations float --plot roofline -o ./ --memspeed 3200 -a agent | ||
AMDuProfModelling.py -i ./exaEpi.csv --operations int --plot roofline -o ./ --memspeed 3200 -a agent | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,241 @@ | ||
import subprocess as sp | ||
import numpy as np | ||
import pandas as pd | ||
from io import StringIO | ||
import os | ||
import re | ||
import shutil | ||
import sqlite3 | ||
from IPython.display import display | ||
import matplotlib.pyplot as plt | ||
from utils import * | ||
import sys | ||
|
||
nsightcompute = sp.run(["which", "nv-nsight-cu-cli"], stdout=sp.PIPE).stdout.decode('utf-8').strip() | ||
if not "nv-nsight-cu-cli" in nsightcompute: | ||
print("Nsight Compute NOT FOUND") | ||
exit() | ||
|
||
tracedir = sp.run(["ls", "-la"], stdout=sp.PIPE).stdout.decode('utf-8').strip() | ||
if not "ncu_traces" in tracedir: | ||
sp.run(["mkdir", "ncu_traces"]) | ||
tracedir = "./ncu_traces" | ||
|
||
homedir = os.path.dirname(os.getcwd()) | ||
outputdir = ["."] | ||
|
||
def parse_time(df_metrics): | ||
selectkeys = ["ID", "Name"] | ||
resultkeys = ["ID", "Name"] | ||
metricdf = df_metrics.copy() | ||
profiledf = pd.DataFrame(columns=selectkeys) | ||
# get cycles | ||
metricname = "CUDA Cycles" | ||
cyclesdf = metricdf.loc[(metricdf["Metric Name"]=="sm__cycles_elapsed") & (metricdf["Metric Type"]=="total"), | ||
selectkeys+["Metric Unit", "Metric Value"]].reset_index(drop=True).sort_values(by=selectkeys).rename(columns={"Metric Value": metricname}).copy() | ||
# get rates | ||
metricname = "CUDA Rates" | ||
ratesdf = metricdf.loc[(metricdf["Metric Name"]=="sm__cycles_elapsed") & (metricdf["Metric Type"]=="rate"), | ||
selectkeys+["Metric Unit", "Metric Value"]].reset_index(drop=True).sort_values(by=selectkeys).rename(columns={"Metric Value": metricname}).copy() | ||
# check consistency | ||
if not cyclesdf[['ID', 'Name']].equals(ratesdf[['ID', 'Name']]): | ||
raise ValueError("CUDA Time data not consistent") | ||
# adjust metric unit | ||
if(ratesdf.size >0 and cyclesdf.size >0): | ||
ratesdf["CUDA Rates"]= pd.to_numeric(ratesdf["CUDA Rates"].replace(',', '', regex=True)) | ||
cyclesdf["CUDA Cycles"]= pd.to_numeric(cyclesdf["CUDA Cycles"].replace(',', '', regex=True)) | ||
ratesdf.loc[ratesdf["Metric Unit"].str.contains("cycle/nsecond"), ["CUDA Rates"]] *= 1e9 | ||
ratesdf.loc[ratesdf["Metric Unit"].str.contains("cycle/usecond"), ["CUDA Rates"]] *= 1e6 | ||
# manual merge and compute CUDA Time | ||
cyclesdf["CUDA Rates"] = list(ratesdf["CUDA Rates"]) | ||
cyclesdf["CUDA Time"] = cyclesdf["CUDA Cycles"] / cyclesdf["CUDA Rates"] | ||
# merge with output | ||
profiledf = cyclesdf[selectkeys+['CUDA Time']].copy() | ||
### Combine | ||
profiledf['Invocations'] = 1 | ||
profiledf = profiledf.groupby(resultkeys).sum().reset_index() | ||
profiledf.sort_values(by=resultkeys).reset_index(drop=True, inplace=True) | ||
display(profiledf) | ||
return profiledf | ||
|
||
### Integer operations | ||
def parse_intOps(df_metrics): | ||
selectkeys = ["ID", "Name"] | ||
resultkeys = ["ID", "Name"] | ||
metricdf = df_metrics.copy() | ||
|
||
metricdf["Metric Value"]= pd.to_numeric(metricdf["Metric Value"].replace(',', '', regex=True)) | ||
profiledf = pd.DataFrame(columns=selectkeys) | ||
metrics = ['smsp__sass_thread_inst_executed_op_integer_pred_on'] | ||
tmpdf = metricdf.loc[ metricdf["Metric Name"].isin(metrics), resultkeys+["Metric Value"] ].copy() | ||
tmpdf = tmpdf.groupby(resultkeys).sum().reset_index().rename(columns={"Metric Value": "INT OPs"}) | ||
print(tmpdf) | ||
if (tmpdf.size >0): | ||
profiledf = tmpdf[resultkeys+["INT OPs"]] | ||
profiledf.sort_values(by=resultkeys).reset_index(drop=True, inplace=True) | ||
display(profiledf) | ||
del metricdf['ID'] | ||
return profiledf | ||
|
||
def parse_dram(df_metrics): | ||
selectkeys = ["ID", "Name"] | ||
resultkeys = ["ID", "Name"] | ||
metricdf = df_metrics.copy() | ||
profiledf = pd.DataFrame(columns=selectkeys) | ||
profiledf = profiledf.fillna(0.) | ||
if (metricdf.size >0): | ||
metricdf.loc[metricdf["Metric Unit"].str.contains("Gbyte"), ["Metric Value"]] *= 1e9 | ||
metricdf.loc[metricdf["Metric Unit"].str.contains("Mbyte"), ["Metric Value"]] *= 1e6 | ||
metricdf.loc[metricdf["Metric Unit"].str.contains("Kbyte"), ["Metric Value"]] *= 1e3 | ||
|
||
#project out | ||
dramdf = metricdf.loc[metricdf["Metric Name"].str.contains("dram__bytes"), resultkeys+["Metric Value"] ].copy() | ||
dramdf = dramdf.groupby(resultkeys).sum().reset_index().rename(columns={"Metric Value": "DRAM Bytes"}) | ||
# merge | ||
if (dramdf.size >0): | ||
profiledf = dramdf[resultkeys+["DRAM Bytes"]] | ||
profiledf.sort_values(by=resultkeys).reset_index(drop=True, inplace=True) | ||
del metricdf['ID'] | ||
return profiledf | ||
|
||
|
||
#run the program and collect ncu traces | ||
|
||
sp.run(["dcgmi", "profile", "--pause"]) | ||
sp.run(["ncu", "-o", "./ncu_traces/ncu.kernel_all.metric_cyclePerSec.avg.cycles.avg", "--metrics=sm__cycles_elapsed.avg.per_second,sm__cycles_elapsed.avg"]+sys.argv[1:]) | ||
sp.run(["ncu", "-o", "./ncu_traces/ncu.kernel_all.metric_dramread", "--metrics=dram__bytes_read.sum"]+sys.argv[1:]) | ||
sp.run(["ncu", "-o", "./ncu_traces/ncu.kernel_all.metric_dramwrite", "--metrics=dram__bytes_write.sum"]+sys.argv[1:]) | ||
sp.run(["ncu", "-o", "./ncu_traces/ncu.kernel_all.metric_flops", "--metrics=smsp__sass_thread_inst_executed_op_integer_pred_on.sum"]+sys.argv[1:]) | ||
|
||
#combination of markers and colors (8x3=24 for now) | ||
color_list= ['r', 'g', 'b'] | ||
marker_list= ['o', 'v', '*', 's', 'p', '*', 'h', 'd'] | ||
plt.figure() | ||
allKernelName = "" | ||
dirCnt=0 | ||
|
||
if True: | ||
#get all the files | ||
files = [] | ||
files += [ os.path.join(tracedir,x) for x in os.listdir(tracedir) if ((os.path.splitext(x)[-1] == ".ncu-rep"))] | ||
|
||
#recs | ||
records = [] | ||
#build feature list: | ||
for path in files: | ||
file = os.path.basename(path) | ||
#path | ||
path = os.path.dirname(path) | ||
#splitup | ||
splt = file.split(".") | ||
prefix = ".".join(splt[0:-1]) | ||
#append to records | ||
records.append({"prefix": prefix, "file": os.path.join(path, file)}) | ||
#put in df | ||
recorddf = pd.DataFrame(records).sort_values(["prefix"]) | ||
resultkeys = ["ID", "Name"] | ||
profiledf_time = pd.DataFrame(columns=resultkeys) | ||
profiledf_fp32 = pd.DataFrame(columns=resultkeys) | ||
profiled_allIntOps = pd.DataFrame(columns=resultkeys) | ||
profiledf_DRAM = pd.DataFrame(columns=resultkeys) | ||
profiled_allDRAM = pd.DataFrame(columns=resultkeys) | ||
aggregatedKernelName = "" | ||
|
||
for pref in recorddf["prefix"]: | ||
file = os.path.basename(path) | ||
#set empty lists | ||
df_times = [] | ||
df_timeline = [] | ||
df_summary = [] | ||
df_metrics = [] | ||
|
||
#project frame | ||
files = recorddf.loc[ recorddf["prefix"] == pref, "file" ].values | ||
#project the invididual files | ||
metricfile = [x for x in files if x.endswith(".ncu-rep")][0] | ||
#get the parameters from the filename | ||
parameters = parse_filename_nsight(metricfile) | ||
splt= pref.split(".") | ||
kernelName= splt[1] | ||
|
||
#metrics | ||
#open subprocess and communicate | ||
metricdf = import_nsight_metric(metricfile, ncu=nsightcompute) | ||
for key in parameters: | ||
metricdf[key] = parameters[key] | ||
|
||
#fuse read/write metrics together: | ||
unique_metrics = metricdf["Metric Name"].unique() | ||
|
||
unique_metrics = set([x.replace(".sum","").replace(".per_second","").replace(".avg","").replace("_write","").replace("_read","").replace("_ld","").replace("_st","") for x in unique_metrics]) | ||
unique_metrics = set([x.replace(".sum","").replace(".per_second","").replace(".avg","") for x in unique_metrics]) | ||
unique_units = metricdf["Metric Unit"].unique() | ||
#add the metric type | ||
metricdf["Metric Type"] = "total" | ||
#read | ||
metricdf.loc[ metricdf[ "Metric Name" ].str.contains("_read"), "Metric Type" ] = "read" | ||
metricdf.loc[ metricdf[ "Metric Name" ].str.contains("_ld"), "Metric Type" ] = "read" | ||
#write | ||
metricdf.loc[ metricdf[ "Metric Name" ].str.contains("_write"), "Metric Type" ] = "write" | ||
metricdf.loc[ metricdf[ "Metric Name" ].str.contains("_st"), "Metric Type" ] = "write" | ||
#rate | ||
metricdf.loc[ metricdf[ "Metric Name" ].str.contains(".per_second"), "Metric Type" ] = "rate" | ||
|
||
for metric in unique_metrics: | ||
metricdf.loc[ metricdf[ "Metric Name"].str.startswith(metric), "Metric Name" ] = metric | ||
|
||
#append to DF: | ||
df_metrics.append(metricdf) | ||
|
||
metricdf = pd.concat(df_metrics) | ||
|
||
#compute the profile | ||
parsedTime = parse_time(metricdf) | ||
if parsedTime.size>0: | ||
profiledf_time = parsedTime | ||
aggregatedKernelName = kernelName[len("kernel"):] | ||
|
||
parsedIntOps = parse_intOps(metricdf) | ||
if parsedIntOps.size >0 : | ||
profiledf_fp32 = parsedIntOps | ||
aggregatedKernelName = kernelName[len("kernel"):] | ||
|
||
parsedDRAM = parse_dram(metricdf) | ||
if parsedDRAM.size >0 : | ||
#profiledf_DRAM = profiledf_DRAM.append(parsedDRAM) | ||
profiledf_DRAM = parsedDRAM | ||
aggregatedKernelName = kernelName[len("kernel"):] | ||
allKernelName += aggregatedKernelName | ||
profiled_allIntOps = profiledf_time | ||
profiled_allDRAM = profiledf_time | ||
profiled_allIntOps = profiled_allIntOps.merge(profiledf_fp32[resultkeys+["INT OPs"]], on=resultkeys, how="inner") | ||
profiled_allIntOps = profiled_allIntOps.merge(profiledf_DRAM[resultkeys+["DRAM Bytes"]], on=resultkeys, how="inner") | ||
|
||
profiled_allIntOps["INT/s"] = profiled_allIntOps["INT OPs"] / profiled_allIntOps["CUDA Time"] | ||
profiled_allIntOps["INT/B"] = profiled_allIntOps["INT OPs"] / profiled_allIntOps["DRAM Bytes"] | ||
|
||
AI_IntOps= profiled_allIntOps["INT/B"] | ||
INTRateCol= profiled_allIntOps["INT/s"] | ||
|
||
#remove the underscore | ||
myColor= color_list[dirCnt % len(color_list)] | ||
myMarker= marker_list[dirCnt // len(color_list)] | ||
lbl= aggregatedKernelName[1:] | ||
roofline= plt.scatter(AI_IntOps, INTRateCol, marker=myMarker, color=myColor, label=lbl) | ||
plt.legend(numpoints=1, loc='lower left', prop={'size': 8}) | ||
dirCnt = dirCnt+1 | ||
|
||
x = np.arange(0,12.535,0.01) | ||
x1 = np.arange(1,10000,0.1) | ||
x2 = np.arange(0,1,0.001) | ||
y1 = np.full(len(x1), 108*4*1.41*32*1e9) | ||
plt.plot(x, 1555*x*1e9, color='black',linestyle='-',linewidth=2.0) | ||
plt.plot(x1, y1, color='black',linestyle='-',linewidth=2.0) | ||
plt.plot(x2, 19492*x2*1e9, color='green',linestyle='-',linewidth=2.0) | ||
plt.xlabel("Arithmetic Intensity (IntOps/Byte)") | ||
plt.ylabel("Op Rate (IntOps/s)") | ||
plt.yscale('log') | ||
plt.xscale('log') | ||
plt.show() | ||
output= "Roofline.pdf" | ||
plt.savefig(output) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
import subprocess as sp | ||
import numpy as np | ||
import pandas as pd | ||
from io import StringIO | ||
import os | ||
import re | ||
import shutil | ||
import sqlite3 | ||
|
||
def parse_filename_nsight(filename): | ||
result={} | ||
result["Kernel"] = str(re.match(r'.*\.kernel_(.*?)\.',filename).groups()[0]) | ||
return result | ||
|
||
def import_nsight_metric(filename, ncu): | ||
#execute nvprof and parse file | ||
args = [ncu,"--csv","-i",filename] | ||
#skiprows = 2 | ||
|
||
#open subprocess and communicate | ||
p = sp.Popen(args, stdout=sp.PIPE, stderr=sp.PIPE) | ||
stdout, stderr = p.communicate() | ||
|
||
#get timeline from csv | ||
profiledf = pd.read_csv(StringIO(stdout.decode("utf-8")),skiprows=0) #.dropna(how="all").rename(columns={"Kernel": "Name"}) | ||
|
||
#clean up | ||
del profiledf["Process ID"] | ||
del profiledf["Process Name"] | ||
del profiledf["Host Name"] | ||
del profiledf["Kernel Time"] | ||
del profiledf["Context"] | ||
#del profiledf["Stream"] | ||
del profiledf["Section Name"] | ||
|
||
profiledf.rename(columns={"Kernel Name": "Name"}, inplace=True) | ||
|
||
#return result | ||
return profiledf | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
echo "Running 1 job on the GPU" | ||
start=`date +%s` | ||
srun ./agent ../../examples/inputs >run0.log | ||
end=`date +%s` | ||
runtime=$((end-start)) | ||
echo "Runtime: $((runtime)) seconds" | ||
|
||
export CUDA_MPS_PIPE_DIRECTORY=/tmp/nvidia-mps | ||
export CUDA_MPS_LOG_DIRECTORY=/tmp/nvidia-log | ||
export CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=33 | ||
export SLURM_CPU_BIND="cores" | ||
|
||
|
||
if [ $SLURM_PROCID -eq 0 ]; then | ||
nvidia-cuda-mps-control -d | ||
fi | ||
|
||
echo "Colocating 3 identical jobs on the GPU" | ||
start=`date +%s` | ||
srun ./agent ../../examples/inputs >run1.log & | ||
srun ./agent ../../examples/inputs >run2.log & | ||
srun ./agent ../../examples/inputs >run3.log | ||
end=`date +%s` | ||
runtime=$((end-start)) | ||
echo "Runtime for all jobs: $((runtime)) seconds" | ||
|
||
if [ $SLURM_PROCID -eq 0 ]; then | ||
echo quit | nvidia-cuda-mps-control | ||
fi |