This Module is Numerical analysis, area of mathematics and computer science that creates, analyzes, and implements algorithms for obtaining numerical solutions to problems involving continuous variables. Such problems arise throughout the natural sciences, social sciences, engineering, medicine, and business.
Pip install this module from your console
pip install numerical-analysis-aman
Import this module to your Work Space
# Import In Python File
from Numerical_Analysis_Aman import <Module>
# =>> _MODULES_
# -> Numerical_Algebra
# -> Numerical_Analysis
# -> Numerical_Integration
# -> Numerical_Interpolation
# Import all
from Numerical_Analysis_Aman import *
This at present contain 4 parts You can explore them from Below and have some idea about all methods and Functions
This part contain interpolation.
x=Numerical_Analysis_Aman.Numerical_Integration(lower,upper,function)
x.Trapazoid(itration=2)
Trapazoid Methodx.Simpson_13(itration=2)
Simpson 1/3x.Simpson_38(itration=2)
Simpson 3/8
This part contain Integration Method having Three method
x = Numerical_Analysis_Aman.Numerical_Analysis(x_0,y_0,x_given,gap,function)
x.Eular( itration = 4 )
Eularx.EularModified( itration = 4 )
EularModifiedx.RungaKutta( itration = 4 )
RungaKutta
This part contain Analysis Method having Four method
x=Numerical_Analysis_Aman.Numerical_Interpolation(x_list,y_list,find_value)
x.Langrangian()
Langrangianx.Newton_Divided()
Newton Divided Differencesx.Newton_Forward()
Newton Forwardx.Newton_Backward()
Newton Backward
This part contain Analysis Method having Three method
x=Numerical_Analysis_Aman.Numerical_Algebra(list_1,list_2,list_3)
x.Jacobi(itration=6)
Jacobix.Gauss_Seidel(itration=6)
Gauss Seidelx.Gauss_Seidel_4(list_4,itration=6)
Gauss Seidel for 4 variable
Example and sample for input and how to work on it
import Numerical_Analysis_Aman as na
x = na.Numerical_Integration(2,7,"1/(5*x+3)")
y = na.Numerical_Analysis(0,1,0.2,0.1,"((x**3)*(math.e**(-2*x))-(2*y))")
z = na.Numerical_Interpolation([1891,1901,1911,1921,1931],[46,66,81,93,101],1925)
w = na.Numerical_Algebra([10,1,-1,11.19],[1,10,1,28.08],[-1,1,10,35.61])
# All of them are Initiated at once you can use them individualy as per requirement
# default Itrations - 2
print(x.Trapazoid( ))
print(x.Simpson_13( ))
print(x.Simpson_38( ))
# default Itrations - 4
print(y.Eular( ))
print(y.EularModified( ))
print(y.RungaKutta( ))
print(z.Langrangian( ))
print(z.Newton_Divided( ))
print(z.Newton_Forward( ))
print(z.Newton_Backward( ))
# default Itrations - 6
print(w.Jacobi( ))
print(w.Gauss_Seidel( ))
# needed Additional list for 4 variable
# print(w.Gauss_Seidel_4(list_4))
If any Issue Contact Me through Email [email protected]
This repository is licensed under the MIT license.
See LICENSE for details.