This repository is the official implementation of "CoPur: Certifiably Robust Collaborative Inference via Feature Purification".
The required packages can be installed by:
pip install -r requirement.txt
For datasets:
- Download NUS_WIDE dataset to folder
nus-wide/NUS_WIDE
- The Extrasensory dataset is available in
extrasensory/example.csv
- Enter the folder
cd nus-wide
- The pre-trained Local feature extractors can be found in the folder
nus_results
- Feature subspace learning
python nus_ae_train.py --ae_epochs 400 --ae_lr 0.001 --img_feature_div 0 360 634 --text_feature_div 0 500 1000
- Fusion center training
python nus_server_ae_train.py --use_ae --lr 0.001 --epochs 200 --img_feature_div 0 360 634 --text_feature_div 0 500 1000
- Inference under untargeted attack
python nus_infer_attack.py --use_ae --L_lr 0.001 --img_feature_div 0 360 634 --text_feature_div 0 500 1000 --corruption_amp 10
- Inference under targeted attack
python nus_infer_attack.py --use_ae --L_lr 0.001 --img_feature_div 0 360 634 --text_feature_div 0 500 1000 --num_test_samples 1000 --targeted 1
- Enter the folder
cd extrasensory
- Local feature extractor training (trained models are saved in `nus_results' folder)
python sensor_normal_train.py --epochs 200 --emb_dim 32 --num_class 1 --lr 0.001 --text_feature_div 0 26 52 83 129 138 155 183 209 213 221
- Feature subspace learning
python sensor_ae_train.py --ae_epochs 400 --ae_lr 0.001 --text_feature_div 0 26 52 83 129 138 155 183 209 213 221
- Fusion center training
python sensor_server_ae_train.py --use_ae --epochs 200 --lr 0.001 --text_feature_div 0 26 52 83 129 138 155 183 209 213 221
- Inference under untargeted attack
python sensor_infer_attack.py --use_ae --L_lr 0.001 --text_feature_div 0 26 52 83 129 138 155 183 209 213 221 --corruption_amp 10
- Inference under targeted attack
python sensor_infer_attack.py --use_ae --L_lr 0.001 --text_feature_div 0 26 52 83 129 138 155 183 209 213 221 --targeted 1
If you find our work useful in your research, please consider citing:
@inproceedings{
liu2022copur,
title={CoPur: Certifiably Robust Collaborative Inference via Feature Purification},
author={Jing Liu and Chulin Xie and Oluwasanmi O Koyejo and Bo Li},
booktitle={Advances in Neural Information Processing Systems},
editor={Alice H. Oh and Alekh Agarwal and Danielle Belgrave and Kyunghyun Cho},
year={2022},
url={https://openreview.net/forum?id=r5rzV51GZx}
}