Skip to content

AI-Leap/AI_for_beginners

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 

Repository files navigation

AI for beginners

Screen Shot 2021-08-17 at 23 29 54

Table of Contents

General info

This repo is for those who would like to start learning machine learning algorithms and the machine pipeline.

Repositories

  • Titanic Survival Classification

[Project Background] This is for survival prediction on Titanic Data. The model is built to predict which passenger survived on Titanic shipwreck.

[Dataset]

df

[Model]

Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 32)                1792      
_________________________________________________________________
dropout (Dropout)            (None, 32)                0         
_________________________________________________________________
batch_normalization (BatchNo (None, 32)                128       
_________________________________________________________________
dense_1 (Dense)              (None, 16)                528       
_________________________________________________________________
dropout_1 (Dropout)          (None, 16)                0         
_________________________________________________________________
batch_normalization_1 (Batch (None, 16)                64        
_________________________________________________________________
dense_2 (Dense)              (None, 5)                 85        
_________________________________________________________________
batch_normalization_2 (Batch (None, 5)                 20        
_________________________________________________________________
dense_3 (Dense)              (None, 1)                 6         
=================================================================
Total params: 2,623
Trainable params: 2,517
Non-trainable params: 106

[Evaluation]

Classification Report:

                precision   recall    f1-score   support

    0.0         0.78      0.93        0.85       157
    1.0         0.86      0.63        0.73       111

accuracy                              0.81       268
macro avg       0.82        0.78      0.79       268
weighted avg    0.82        0.81      0.80       268

Technologies

  • Pandas, numpy, os,
  • matplotlib, seaborn,
  • tensorflow, scikit-learn, keras

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published