-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
114 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
from typing import Callable, List, Optional | ||
import jax | ||
from ase.calculators.calculator import Calculator, all_changes | ||
from ase.stress import full_3x3_to_voigt_6_stress | ||
from jax.config import config | ||
import numpy as np | ||
import jraph | ||
from flax import traverse_util | ||
|
||
from mace_jax import data, tools | ||
from mace_jax.data.utils import ( | ||
AtomicNumberTable, | ||
atomic_numbers_to_indices, | ||
graph_from_configuration, | ||
) | ||
|
||
|
||
def stop_grad(variables): | ||
flat_vars = traverse_util.flatten_dict(variables) | ||
new_vars = {k: jax.lax.stop_gradient(v) for k, v in flat_vars.items()} | ||
return traverse_util.unflatten_dict(new_vars) | ||
|
||
|
||
class MACEJAXCalculator(Calculator): | ||
"""MACE ASE Calculator""" | ||
|
||
implemented_properties = ["energy", "free_energy", "forces", "stress"] | ||
|
||
def __init__( | ||
self, | ||
model: Callable, | ||
params: dict, | ||
r_max: float, | ||
energy_units_to_eV: float = 1.0, | ||
length_units_to_A: float = 1.0, | ||
default_dtype="float64", | ||
atomic_numbers: Optional[List[int]] = None, | ||
**kwargs | ||
): | ||
Calculator.__init__(self, **kwargs) | ||
self.results = {} | ||
self.model = model | ||
self.params = stop_grad(params) | ||
self.predictor = jax.jit( | ||
lambda w, g: tools.predict_energy_forces_stress( | ||
lambda *x: self.model(w, *x), g | ||
) | ||
) | ||
|
||
self.r_max = r_max | ||
self.energy_units_to_eV = energy_units_to_eV | ||
self.length_units_to_A = length_units_to_A | ||
self.z_table = None | ||
self.min_n_edge = 0 | ||
|
||
if atomic_numbers is not None: | ||
self.z_table = lambda x: atomic_numbers_to_indices( | ||
x, AtomicNumberTable([int(z) for z in atomic_numbers]) | ||
) | ||
if default_dtype == "float64": | ||
config.update("jax_enable_x64", True) | ||
|
||
# pylint: disable=dangerous-default-value | ||
def calculate(self, atoms=None, properties=None, system_changes=all_changes): | ||
""" | ||
Calculate properties. | ||
:param atoms: ase.Atoms object | ||
:param properties: [str], properties to be computed, used by ASE internally | ||
:param system_changes: [str], system changes since last calculation, used by ASE internally | ||
:return: | ||
""" | ||
# call to base-class to set atoms attribute | ||
Calculator.calculate(self, atoms) | ||
|
||
# prepare data | ||
config = data.config_from_atoms(atoms) | ||
if self.z_table is not None: | ||
config.atomic_numbers = self.z_table(config.atomic_numbers) | ||
|
||
graph_config = graph_from_configuration(config, cutoff=self.r_max) | ||
if self.min_n_edge == 0 or self.min_n_edge <= graph_config.n_edge: | ||
self.min_n_edge = graph_config.n_edge + max( | ||
int(graph_config.n_edge // 10), 10 | ||
) | ||
# pad graph with dummy atoms | ||
graph = jraph.pad_with_graphs( | ||
graph_config, | ||
n_node=graph_config.n_node + 1, | ||
n_edge=self.min_n_edge, | ||
n_graph=2, | ||
) | ||
# predict + extract data | ||
out = self.predictor(self.params, graph) | ||
energy = np.array(jax.lax.stop_gradient(out["energy"]))[0] | ||
forces = np.array(jax.lax.stop_gradient(out["forces"]))[:-1, :] | ||
|
||
# store results | ||
E = energy * self.energy_units_to_eV | ||
self.results = { | ||
"energy": E, | ||
"free_energy": E, | ||
# force has units eng / len: | ||
"forces": forces * (self.energy_units_to_eV / self.length_units_to_A), | ||
} | ||
|
||
# even though compute_stress is True, stress can be none if pbc is False | ||
# not sure if correct ASE thing is to have no dict key, or dict key with value None | ||
if out["stress"] is not None: | ||
stress = np.array(jax.lax.stop_gradient(out["stress"]))[:3, :3] | ||
# stress has units eng / len^3: | ||
self.results["stress"] = ( | ||
stress * (self.energy_units_to_eV / self.length_units_to_A ** 3) | ||
)[0] | ||
self.results["stress"] = full_3x3_to_voigt_6_stress(self.results["stress"]) |