Algorithm based on Yolo v5 and Deep Sort to detect surrounding vehicles' distance and relative velocity
使用Yolo v5和 Deep Sort实现车辆距离与相对速度检测
Improved from Monocular_Distance_Detect
HD Video can be found Here
vs2019
CUDA
cuDNN
: Make sure the version fit the requirement of your hardwaresAnaconda(Recommend)
Python>=3.8
Pytorch
: Check the version (MUST be GPU instead of CPU) of packages provided byconda
before installpip install -r requirement.txt
: install libraries before run the track.py script
Note: GPU NVIDIA 3060
and above should use pytorch>=1.11
Yolo_path: ./Monocular_Distance_Velocity_Detect/
deep sort: C:\Users\Your_Computer_Name\.cache\torch\checkpoints\
if the program doesn't download the deep sort checkponts automatically, copy the files in /checkpoints
to the correct path manually.
python track.py --source YOUR_PATH\demo.mp4 --yolo_model yolov5m.pt --deep_sort_model osnet_x1_0_imagenet --show-vid --save-vid --save-csv
Note: yolov5m.pt & osnet_x1_0_imagenet could be selected by yourself.
if there are many videos under the same folder, modify and execute run.py
python run.py
Output Path: ./runs/track/
#Line 58
#Your video/image resolution/size
#画面分辨率
W = 1280
H = 720
#vertical height(m) from camera to the ground/road
#相机离地面高度
H = 0.4
#The angle between the camera len and the horizontal line(the moving direction of vehicle), default is 0
#相机与水平线夹角, 默认为0 相机镜头正对前方,无倾斜
angle_a = 0
In track.py, we only detect the ['person', 'car', 'truck', 'bicycle', 'motorcycle', 'bus']
,
follow this and modified the code(line 301, 325)
to add more.
#please update the path before running the track.py script
if save_csv:
df = pd.DataFrame(storage)
df.to_excel('Your_path/test.xlsx',index=False)