-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
405 lines (334 loc) · 19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
from math import ldexp
from sched import scheduler
import matplotlib
import argparse
import os
import sys
import uuid
from datetime import datetime as dt
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
import torch.utils.data.distributed
import torchvision
# import wandb
from tqdm import tqdm
from datetime import datetime
import model_io
# from models.unet import UNet
from models.unet import UNet
import utils
from dataloader import DepthDataLoader
from loss import SILogLoss
from utils import RunningAverage, colorize
from tensorboardX import SummaryWriter
PROJECT = "MIDepth"
logging = True
def is_rank_zero(args):
return args.rank == 0
def log_images(writer, img, depth, pred, args, step):
img = torchvision.utils.make_grid(img.detach())
depth = torchvision.utils.make_grid(depth / args.max_depth)
pred = torchvision.utils.make_grid(pred / args.max_depth)
writer.add_image("Train/img", img, step)
writer.add_image("Train/depth", depth, step)
writer.add_image("Train/pred", pred, step)
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
###################################### Load model ##############################################
model = UNet(cout=1)
optimizer_state_dict = None
scheduler_state_dict = None
epoch = 0
if(args.resume_path != ""):
print(f"Loading from {args.resume_path}.")
if(args.finetune):
model, optimizer_state_dict, scheduler_state_dict, epoch = model_io.load_checkpoint_finetune(args.resume_path, model)
else:
model, optimizer_state_dict, scheduler_state_dict, epoch = model_io.load_checkpoint(args.resume_path, model)
# model(torch.rand([1, 3, args.input_height, args.input_width])) # initialize model with dummy values
################################################################################################
if args.gpu is not None: # If a gpu is set by user: NO PARALLELISM!!
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
args.multigpu = False
if args.distributed:
# Use DDP
args.multigpu = True
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
args.batch_size = int(args.batch_size / ngpus_per_node)
# args.batch_size = 8
args.workers = int((args.num_workers + ngpus_per_node - 1) / ngpus_per_node)
print("Gpu:", args.gpu, "rank:", args.rank, "batch_size:", args.batch_size, "workers:", args.workers)
torch.cuda.set_device(args.gpu)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = model.cuda(args.gpu)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], output_device=args.gpu,
find_unused_parameters=False)
elif args.gpu is None:
# Use DP
args.multigpu = True
model = model.cuda()
model = torch.nn.DataParallel(model)
args.epoch = epoch
args.last_epoch = -1
train(model, args, epochs=args.epochs, lr=args.lr, device=args.gpu, root=args.root,
experiment_name=args.name, optimizer_state_dict=optimizer_state_dict, scheduler_state_dict=scheduler_state_dict)
def train(model, args, epochs=10, experiment_name="DeepLab", lr=0.0001, root=".", device=None,
optimizer_state_dict=None, scheduler_state_dict=None):
global PROJECT
if device is None:
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
###################################### Logging setup #########################################
should_write = ((not args.distributed) or args.rank == 0)
should_log = should_write and logging
if should_log:
print(f"Training {experiment_name}")
writer = SummaryWriter("logs/" + datetime.now().strftime("%Y%m%d-%H%M%S"))
run_id = f"{dt.now().strftime('%h-%d_%H-%M')}-node_bs{args.bs}-tep{epochs}-lr{lr}-wd{args.wd}-{uuid.uuid4()}"
name = f"{experiment_name}_{run_id}"
if should_log:
tags = args.tags.split(',') if args.tags != '' else None
if args.dataset != 'nyu':
PROJECT = PROJECT + f"-{args.dataset}"
################################################################################################
train_loader = DepthDataLoader(args, 'train').data
test_loader = DepthDataLoader(args, 'online_eval').data
###################################### losses ##############################################
criterion_ueff = SILogLoss()
# l1_loss = nn.L1Loss()
################################################################################################
model.train()
###################################### Optimizer ################################################
# if args.same_lr:
# print("Using same LR")
# params = model.parameters()
# else:
# print("Using diff LR")
# m = model.module if args.multigpu else model
# params = [{"params": m.get_1x_lr_params(), "lr": lr / 10},
# {"params": m.get_10x_lr_params(), "lr": lr}]
params = model.parameters()
optimizer = optim.AdamW(params, weight_decay=args.wd, lr=args.lr)
if args.resume_path != "" and optimizer_state_dict is not None:
optimizer.load_state_dict(optimizer_state_dict)
################################################################################################
# some globals
iters = len(train_loader)
step = args.epoch * iters
best_loss = np.inf
###################################### Scheduler ###############################################
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95)
if args.resume_path != "" and scheduler_state_dict is not None:
# scheduler.step(args.epoch + 1)
scheduler.load_state_dict(scheduler_state_dict)
################################################################################################
# max_iter = len(train_loader) * epochs
cumulated_loss = 10
for epoch in range(args.epoch, epochs):
################################# Train loop ##########################################################
for i, batch in tqdm(enumerate(train_loader), desc=f"Epoch: {epoch + 1}/{epochs}. Loop: Train",
total=len(train_loader)) if is_rank_zero(
args) else enumerate(train_loader):
optimizer.zero_grad()
img = batch['image'].to(device)
depth = batch['depth'].to(device)
if 'has_valid_depth' in batch:
if not batch['has_valid_depth']:
continue
# assert(torch.isnan(img))
pred = model(img) * args.max_depth
# assert(torch.isnan(pred))
mask = depth > args.min_depth
l_dense = criterion_ueff(pred, depth, mask=mask.to(torch.bool), interpolate=False)
# l_l1 = l1_loss(pred[mask], depth[mask])
loss = l_dense
loss.backward()
# nn.utils.clip_grad_norm_(model.parameters(), 0.1) # optional
optimizer.step()
cumulated_loss += loss.item()
if should_log and step % args.log_loss_freq == 0:
writer.add_scalar('info/lr', scheduler.get_last_lr(), step)
cumulated_loss = cumulated_loss / args.log_loss_freq
writer.add_scalar(f'info/last_{args.log_loss_freq}_loss', cumulated_loss, step)
cumulated_loss = 0
if should_log and step % args.log_image_freq == 0:
img_log = img.detach().cpu()
depth_log = depth.detach().cpu()
pred_log = pred.detach().cpu()
log_images(writer, img_log, depth_log, pred_log, args, step)
step += 1
# scheduler.step()
########################################################################################################
if should_write and epoch >= args.online_eval_after and step % args.validate_every == 0:
################################# Validation loop ##################################################
model.eval()
metrics, val_si = validate(args, model, test_loader, criterion_ueff, epoch, epochs, device)
# print("Validated: {}".format(metrics))
if should_log:
writer.add_scalar(f'OnlineEval/{l_dense.name}', val_si.get_value(), step)
for k, v in metrics.items():
writer.add_scalar(f"OnlineEval/{k}", v, step)
model_io.save_checkpoint(model, optimizer, scheduler, epoch, f"{experiment_name}_{run_id}_latest.pt", root=os.path.join(root, "checkpoints"))
if metrics['abs_rel'] < best_loss and should_write:
model_io.save_checkpoint(model, optimizer, scheduler, epoch, f"{experiment_name}_{run_id}_best.pt", root=os.path.join(root, "checkpoints"))
print(f"Best checkpoint {experiment_name}_{epoch}_{step} saved.")
best_loss = metrics['abs_rel']
model.train()
#################################################################################################
scheduler.step()
if should_write:
model_io.save_checkpoint(model, optimizer, scheduler, epoch, f"{experiment_name}_{epoch}.pt",
root=os.path.join(root, "checkpoints"))
print(f"Checkpoint {experiment_name}_{epoch}.pt saved.")
return model
def validate(args, model, test_loader, criterion_ueff, epoch, epochs, device='cpu'):
with torch.no_grad():
val_si = RunningAverage()
# val_bins = RunningAverage()
metrics = utils.RunningAverageDict()
for batch in tqdm(test_loader, desc=f"Epoch: {epoch + 1}/{epochs}. Loop: Validation") if is_rank_zero(
args) else test_loader:
img = batch['image'].to(device)
depth = batch['depth'].to(device)
if 'has_valid_depth' in batch:
if not batch['has_valid_depth']:
continue
depth = depth.squeeze().unsqueeze(0).unsqueeze(0)
pred = model(img)*args.max_depth_eval
mask = depth > args.min_depth
l_dense = criterion_ueff(pred, depth, mask=mask.to(torch.bool), interpolate=False)
val_si.append(l_dense.item())
# pred = nn.functional.interpolate(pred, depth.shape[-2:], mode='bilinear', align_corners=True)
pred = pred.squeeze().cpu().numpy()
pred[pred < args.min_depth_eval] = args.min_depth_eval
pred[pred > args.max_depth_eval] = args.max_depth_eval
pred[np.isinf(pred)] = args.max_depth_eval
pred[np.isnan(pred)] = args.min_depth_eval
gt_depth = depth.squeeze().cpu().numpy()
valid_mask = np.logical_and(gt_depth > args.min_depth_eval, gt_depth < args.max_depth_eval)
if args.garg_crop or args.eigen_crop:
gt_height, gt_width = gt_depth.shape
eval_mask = np.zeros(valid_mask.shape)
if args.garg_crop:
eval_mask[int(0.40810811 * gt_height):int(0.99189189 * gt_height),
int(0.03594771 * gt_width):int(0.96405229 * gt_width)] = 1
elif args.eigen_crop:
if args.dataset == 'kitti':
eval_mask[int(0.3324324 * gt_height):int(0.91351351 * gt_height),
int(0.0359477 * gt_width):int(0.96405229 * gt_width)] = 1
else:
eval_mask[45:471, 41:601] = 1
valid_mask = np.logical_and(valid_mask, eval_mask)
# valid_mask = np.logical_and(valid_mask, eval_mask)
metrics.update(utils.compute_errors(gt_depth[valid_mask], pred[valid_mask]))
return metrics.get_value(), val_si
def convert_arg_line_to_args(arg_line):
for arg in arg_line.split():
if not arg.strip():
continue
yield str(arg)
if __name__ == '__main__':
# Arguments
parser = argparse.ArgumentParser(description='Training script. Default values of all arguments are recommended for reproducibility', fromfile_prefix_chars='@',
conflict_handler='resolve')
parser.convert_arg_line_to_args = convert_arg_line_to_args
parser.add_argument('--epochs', default=25, type=int, help='number of total epochs to run')
parser.add_argument('--lr', '--learning-rate', default=0.000357, type=float, help='max learning rate')
parser.add_argument('--wd', '--weight-decay', default=0.1, type=float, help='weight decay')
parser.add_argument('--div-factor', '--div_factor', default=25, type=float, help="Initial div factor for lr")
parser.add_argument('--final-div-factor', '--final_div_factor', default=100, type=float,
help="final div factor for lr")
parser.add_argument('--bs', default=16, type=int, help='batch size')
parser.add_argument('--log_loss-freq', '--log_loss_freq', default=50, type=int, help='log image frequency')
parser.add_argument('--log_image-freq', '--log_image_freq', default=500, type=int, help='log image frequency')
parser.add_argument('--validate-every', '--validate_every', default=100, type=int, help='validation period')
parser.add_argument('--gpu', default=None, type=int, help='Which gpu to use')
parser.add_argument("--name", default="UnetAdaptiveBins")
parser.add_argument("--same-lr", '--same_lr', default=False, action="store_true",
help="Use same LR for all param groups")
parser.add_argument("--distributed", default=True, action="store_true", help="Use DDP if set")
parser.add_argument("--root", default=".", type=str,
help="Root folder to save data in")
parser.add_argument("--resume_path", default="", type=str, help="Resume from checkpoint path")
parser.add_argument('--finetune', default=False, help="If set, resume from checkpoint but not load optimizer and scheduler", action='store_true')
parser.add_argument("--online_eval_after", default=20, type=int, help="Resume from checkpoint path")
parser.add_argument("--notes", default='', type=str, help="Wandb notes")
parser.add_argument("--tags", default='sweep', type=str, help="Wandb tags")
parser.add_argument("--workers", default=11, type=int, help="Number of workers for data loading")
parser.add_argument("--dataset", default='nyu', type=str, help="Dataset to train on")
parser.add_argument("--data_path", default='../dataset/nyu/sync/', type=str,
help="path to dataset")
parser.add_argument("--gt_path", default='../dataset/nyu/sync/', type=str,
help="path to dataset")
parser.add_argument('--filenames_file',
default="./train_test_inputs/nyudepthv2_train_files_with_gt.txt",
type=str, help='path to the filenames text file')
parser.add_argument('--input_height', type=int, help='input height', default=416)
parser.add_argument('--input_width', type=int, help='input width', default=544)
parser.add_argument('--max_depth', type=float, help='maximum depth in estimation', default=10)
parser.add_argument('--min_depth', type=float, help='minimum depth in estimation', default=1e-3)
parser.add_argument('--do_random_rotate', default=True,
help='if set, will perform random rotation for augmentation',
action='store_true')
parser.add_argument('--degree', type=float, help='random rotation maximum degree', default=2.5)
parser.add_argument('--do_kb_crop', help='if set, crop input images as kitti benchmark images', action='store_true')
parser.add_argument('--use_right', help='if set, will randomly use right images when train on KITTI',
action='store_true')
parser.add_argument('--data_path_eval',
default="../dataset/nyu/official_splits/test/",
type=str, help='path to the data for online evaluation')
parser.add_argument('--gt_path_eval', default="../dataset/nyu/official_splits/test/",
type=str, help='path to the groundtruth data for online evaluation')
parser.add_argument('--filenames_file_eval',
default="./train_test_inputs/nyudepthv2_test_files_with_gt.txt",
type=str, help='path to the filenames text file for online evaluation')
parser.add_argument('--min_depth_eval', type=float, help='minimum depth for evaluation', default=1e-3)
parser.add_argument('--max_depth_eval', type=float, help='maximum depth for evaluation', default=10)
parser.add_argument('--eigen_crop', default=True, help='if set, crops according to Eigen NIPS14',
action='store_true')
parser.add_argument('--garg_crop', help='if set, crops according to Garg ECCV16', action='store_true')
if sys.argv.__len__() == 2:
arg_filename_with_prefix = '@' + sys.argv[1]
args = parser.parse_args([arg_filename_with_prefix])
else:
args = parser.parse_args()
args.batch_size = args.bs
args.num_threads = args.workers
args.mode = 'train'
if args.root != "." and not os.path.isdir(args.root):
os.makedirs(args.root)
try:
node_str = os.environ['SLURM_JOB_NODELIST'].replace('[', '').replace(']', '')
nodes = node_str.split(',')
args.world_size = len(nodes)
args.rank = int(os.environ['SLURM_PROCID'])
except KeyError as e:
# We are NOT using SLURM
args.world_size = 1
args.rank = 0
nodes = ["127.0.0.1"]
if args.distributed:
mp.set_start_method('forkserver')
print("Current rank is", args.rank)
# port = np.random.randint(15000, 15025)
port = 15025
args.dist_url = 'tcp://{}:{}'.format(nodes[0], port)
print("Distributed url is", args.dist_url)
args.dist_backend = 'nccl'
args.gpu = None
ngpus_per_node = torch.cuda.device_count()
args.num_workers = args.workers
args.ngpus_per_node = ngpus_per_node
if args.distributed:
args.world_size = ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
if ngpus_per_node == 1:
args.gpu = 0
main_worker(args.gpu, ngpus_per_node, args)