-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
341 lines (302 loc) · 15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import logging
import multiprocessing
import os
import time
from rich import progress
import mindtorch.torch as torch
import mindtorch.torch.distributed as dist
import mindtorch.torch.multiprocessing as mp
from mindtorch.torch.cuda.amp import GradScaler, autocast
from mindtorch.torch.nn import functional as F
from mindtorch.torch.nn.parallel import DistributedDataParallel as DDP
from mindtorch.torch.utils.data import DataLoader
from mindtorch.torch.utils.tensorboard import SummaryWriter
import modules.commons as commons
import utils
from data_utils import TextAudioCollate, TextAudioSpeakerLoader
from models import (
MultiPeriodDiscriminator,
SynthesizerTrn,
)
from modules.losses import discriminator_loss, feature_loss, generator_loss, kl_loss
from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('numba').setLevel(logging.WARNING)
torch.backends.cudnn.benchmark = True
global_step = 0
start_time = time.time()
# os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
hps = utils.get_hparams()
n_gpus = torch.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = hps.train.port
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
def run(rank, n_gpus, hps):
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.hps(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
# for pytorch on win, backend use gloo
dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
collate_fn = TextAudioCollate()
all_in_mem = hps.train.all_in_mem # If you have enough memory, turn on this option to avoid disk IO and speed up training.
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps, all_in_mem=all_in_mem)
num_workers = 8 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count()
if all_in_mem:
num_workers = 0
train_loader = DataLoader(train_dataset, num_workers=num_workers, shuffle=False, pin_memory=True,persistent_workers=True,
batch_size=hps.train.batch_size, collate_fn=collate_fn)
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps, all_in_mem=all_in_mem,vol_aug = False)
eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False,
batch_size=1, pin_memory=False,
drop_last=False, collate_fn=collate_fn)
net_g = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
net_g = DDP(net_g, device_ids=[rank]) # , find_unused_parameters=True)
net_d = DDP(net_d, device_ids=[rank])
skip_optimizer = False
try:
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
optim_g, skip_optimizer)
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
optim_d, skip_optimizer)
epoch_str = max(epoch_str, 1)
name=utils.latest_checkpoint_path(hps.model_dir, "D_*.pth")
global_step=int(name[name.rfind("_")+1:name.rfind(".")])+1
#global_step = (epoch_str - 1) * len(train_loader)
except Exception:
print("load old checkpoint failed...")
epoch_str = 1
global_step = 0
if skip_optimizer:
epoch_str = 1
global_step = 0
warmup_epoch = hps.train.warmup_epochs
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scaler = GradScaler(enabled=hps.train.fp16_run)
with logger.Progress() as progress:
for epoch in range(epoch_str, hps.train.epochs + 1):
# set up warm-up learning rate
if epoch <= warmup_epoch:
for param_group in optim_g.param_groups:
param_group['lr'] = hps.train.learning_rate / warmup_epoch * epoch
for param_group in optim_d.param_groups:
param_group['lr'] = hps.train.learning_rate / warmup_epoch * epoch
# training
if rank == 0:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
[train_loader, eval_loader], logger, [writer, writer_eval], progress)
else:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
[train_loader, None], None, None, progress)
# update learning rate
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers, progress: progress.Progress):
net_g, net_d = nets
optim_g, optim_d = optims
scheduler_g, scheduler_d = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
half_type = torch.bfloat16 if hps.train.half_type=="bf16" else torch.float16
# train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
enumerated_train_loader = enumerate(train_loader)
# logger.info(f"enumerated_train_loader len: {len(enumerated_train_loader)}")
# "Epoch {}".format(epoch)
task = progress.add_task(f"Epoch {epoch}", total=len(train_loader))
for batch_idx, items in enumerated_train_loader:
# logger.info(f"finish {progress.} ")
c, f0, spec, y, spk, lengths, uv,volume = items
g = spk.cuda(rank, non_blocking=True)
spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
c = c.cuda(rank, non_blocking=True)
f0 = f0.cuda(rank, non_blocking=True)
uv = uv.cuda(rank, non_blocking=True)
lengths = lengths.cuda(rank, non_blocking=True)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
with autocast(enabled=hps.train.fp16_run, dtype=half_type):
y_hat, ids_slice, z_mask, \
(z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths,
spec_lengths=lengths,vol = volume)
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False, dtype=half_type):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run, dtype=half_type):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False, dtype=half_type):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_lf0 = F.mse_loss(pred_lf0, lf0) if net_g.module.use_automatic_f0_prediction else 0
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]['lr']
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
reference_loss=0
for i in losses:
reference_loss += i
logger.info('Train Epoch: {} [{:.0f}%]'.format(
epoch,
100. * batch_idx / len(train_loader)))
logger.info(f"Losses: {[x.item() for x in losses]}, step: {global_step}, lr: {lr}, reference_loss: {reference_loss}")
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
"grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl,
"loss/g/lf0": loss_lf0})
# scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
# scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
# scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy())
}
if net_g.module.use_automatic_f0_prediction:
image_dict.update({
"all/lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
pred_lf0[0, 0, :].detach().cpu().numpy()),
"all/norm_lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
norm_lf0[0, 0, :].detach().cpu().numpy())
})
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict
)
# 达到保存步数或者 stop 文件存在
if global_step % hps.train.eval_interval == 0 or os.path.exists("stop.txt"):
if os.path.exists("stop.txt"):
logger.info("stop.txt found, stop training")
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
keep_ckpts = getattr(hps.train, 'keep_ckpts', 0)
if keep_ckpts > 0:
utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
if os.path.exists("stop.txt"):
logger.info("good bye!")
os.remove("stop.txt")
os._exit(0)
global_step += 1
progress.advance(task)
progress.remove_task(task)
if rank == 0:
global start_time
now = time.time()
duration = format(now - start_time, '.2f') # 这里原本是 durtaion,让我看看是谁拼错了(
logger.info(f'Epoch: {epoch} finished, cost {duration} s, {round(float(duration)/len(train_loader),3)}s per batch')
start_time = now
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
image_dict = {}
audio_dict = {}
with torch.no_grad():
for batch_idx, items in enumerate(eval_loader):
c, f0, spec, y, spk, _, uv,volume = items
g = spk[:1].cuda(0)
spec, y = spec[:1].cuda(0), y[:1].cuda(0)
c = c[:1].cuda(0)
f0 = f0[:1].cuda(0)
uv= uv[:1].cuda(0)
if volume is not None:
volume = volume[:1].cuda(0)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_hat,_ = generator.module.infer(c, f0, uv, g=g,vol = volume)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
audio_dict.update({
f"gen/audio_{batch_idx}": y_hat[0],
f"gt/audio_{batch_idx}": y[0]
})
image_dict.update({
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate
)
generator.train()
if __name__ == "__main__":
main()