-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuralNetwork3.py
314 lines (259 loc) · 10.8 KB
/
NeuralNetwork3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import json
import random
import sys
from PIL import Image
from copy import deepcopy
import numpy as np
import pandas as pd
from tqdm import tqdm
epsilon = 1e-8
class MLP:
def __init__(self, hidden_dims, lr, beta1=0.9, beta2=0.999):
self.hidden = []
self.trainable = {}
# hidden layers
input_dim = 784
for i, n in enumerate(hidden_dims):
name = 'l' + str(i)
layer = FCLayer(input_dim=input_dim, output_dim=n, name=name)
activation = Tanh()
self.hidden.append(layer)
self.hidden.append(activation)
self.trainable[name] = layer
input_dim = n
# softmax layer
self.softmax = SoftmaxCrossEntropy()
# optimizer
self.optimizer = AdamOptimizer(self.trainable, lr, beta1, beta2)
def __call__(self, input):
h_out = input
for h in self.hidden:
h_out = h(h_out)
probs = self.softmax.forward_prob(h_out)
return probs
def compute_loss(self, value, target):
loss = self.softmax.compute_loss(value, target)
grad = self.softmax.bp()
for i in range(len(self.hidden)-1, -1, -1):
grad = self.hidden[i].bp(grad)
return loss
def update(self):
for layer in self.trainable.values():
self.optimizer.update(layer)
def save(self):
params = {}
for name, layer in self.trainable.items():
params[name] = {'w': layer.W, 'b': layer.b}
with open('./weights.json', 'w') as f:
json.dump(params, f, cls=NumpyEncoder, indent=2)
def zero_grad(self):
for layer in self.hidden:
layer.clear()
self.softmax.clear()
class FCLayer:
def __init__(self, input_dim, output_dim, name=None):
self.input_dim = input_dim
self.output_dim = output_dim
# self.W = np.random.normal(size=(self.input_dim, self.output_dim), loc=0., scale=.01)
# self.b = np.zeros(shape=(1, self.output_dim))
# Xavier
# std = np.sqrt(2 / (input_dim + output_dim))
# self.W = np.random.normal(size=(self.input_dim, self.output_dim), loc=0., scale=std)
# self.b = np.random.normal(size=(1, self.output_dim), loc=0., scale=std)
self.W = np.random.normal(size=(self.input_dim, self.output_dim), loc=0., scale=1.) / np.sqrt(input_dim)
self.b = np.random.normal(size=(1, self.output_dim), loc=0., scale=1.) / np.sqrt(input_dim)
self.input = None
self.output = None
self.W_grad = None
self.b_grad = None
self.name = name
def __call__(self, input):
self.input = input
self.output = np.dot(self.input, self.W) + self.b
return self.output
def bp(self, grad):
self.W_grad = np.dot(np.transpose(self.input), grad)
self.b_grad = np.sum(grad, axis=0)
return np.dot(grad, np.transpose(self.W))
def update(self, lr):
if self.W_grad is not None and self.b_grad is not None:
self.W = self.W - lr * self.W_grad
self.b = self.b - lr * self.b_grad
else:
print('no grad available, run backward first.')
def clear(self):
self.input = None
self.output = None
self.W_grad = None
self.b_grad = None
class Tanh:
def __init__(self):
self.output = None
def __call__(self, input):
self.output = np.tanh(input)
return self.output
def bp(self, grad):
tanh_grad = grad * (1 - np.square(self.output))
return tanh_grad
def clear(self):
self.output = None
class SoftmaxCrossEntropy:
def __init__(self):
self.input = None
self.output = None
self.target = None
def forward_prob(self, input):
self.input = input - np.max(input)
self.output = np.exp(input) / np.exp(input).sum(axis=1)[:, np.newaxis]
return self.output
def compute_loss(self, probs, target):
self.target = target
return -np.mean(self.target * np.log(probs))
def bp(self):
batch_size = self.input.shape[0]
grad = -(self.target - self.output) / batch_size
return grad
def clear(self):
self.input = None
self.output = None
self.target = None
class AdamOptimizer:
def __init__(self, trainable, lr, beta1, beta2):
self.step = 1
self.lr = lr
self.beta1 = beta1
self.beta2 = beta2
self.gW_weighted_avg = {}
self.gb_weighted_avg = {}
self.gW_squared_weighted_avg = {}
self.gb_squared_weighted_avg = {}
for k, v in trainable.items():
self.gW_weighted_avg[k], self.gW_squared_weighted_avg[k] = np.zeros_like(v.W), np.zeros_like(v.W)
self.gb_weighted_avg[k], self.gb_squared_weighted_avg[k] = np.zeros_like(v.b), np.zeros_like(v.b)
def update(self, layer):
# momentum for weighted avg
self.gW_weighted_avg[layer.name] = self.beta1 * self.gW_weighted_avg[layer.name] + (
1 - self.beta1) * layer.W_grad
self.gb_weighted_avg[layer.name] = self.beta1 * self.gb_weighted_avg[layer.name] + (
1 - self.beta1) * layer.b_grad
# momentum for squared weighted avg
self.gW_squared_weighted_avg[layer.name] = self.beta2 * self.gW_squared_weighted_avg[layer.name] + (
1 - self.beta2) * np.square(layer.W_grad)
self.gb_squared_weighted_avg[layer.name] = self.beta2 * self.gb_squared_weighted_avg[layer.name] + (
1 - self.beta2) * np.square(layer.b_grad)
# bias correction 1
self.gW_weighted_avg_corr = self.gW_weighted_avg[layer.name] / (1 - self.beta1 ** self.step)
self.gb_weighted_avg_corr = self.gb_weighted_avg[layer.name] / (1 - self.beta1 ** self.step)
# bias correction 2
self.gW_squared_weighted_avg_corr = self.gW_squared_weighted_avg[layer.name] / (
1 - self.beta2 ** self.step)
self.gb_squared_weighted_avg_corr = self.gb_squared_weighted_avg[layer.name] / (
1 - self.beta2 ** self.step)
# update params
layer.W = layer.W - lr * (
self.gW_weighted_avg_corr / np.sqrt(self.gW_squared_weighted_avg_corr + epsilon))
layer.b = layer.b - lr * (
self.gb_weighted_avg_corr / np.sqrt(self.gb_squared_weighted_avg_corr + epsilon))
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def augment_data(imgs, labels):
aug_imgs = []
aug_labels = []
for i, img in enumerate(imgs):
img = img.reshape((28, 28))
img_s = np.zeros_like(img)
# original
img = Image.fromarray(img)
# scale
img_s[3:-3, 3:-3] = np.array(img.resize((22, 22)))
img_s = Image.fromarray(img_s)
# rotate
img_r1 = img.rotate(random.randint(-20, 20))
# img_r2 = img.rotate(-random.randint(20, 30))
# transform
x_t1, y_t1 = random.randint(-5, 5), random.randint(-5, 5)
img_t1 = img_s.transform(img.size, Image.AFFINE, (1, 0, x_t1, 0, 1, y_t1))
# to numpy
img = np.array(img).reshape((784,))
img_s = np.array(img_s).reshape((784,))
img_r1 = np.array(img_r1).reshape((784,))
# img_r2 = np.array(img_r2).reshape((784,))
img_t1 = np.array(img_t1).reshape((784,))
aug_imgs.extend([img, img_s, img_r1, img_t1])
aug_labels.extend([[labels[i]] for _ in range(4)])
# shuffle
aug_set = np.concatenate((np.array(aug_imgs), np.array(aug_labels)), axis=1)
np.random.shuffle(aug_set)
return aug_set[:, :-1], aug_set[:, -1]
def make_one_hot(labels):
one_hot_labels = np.zeros((len(labels), 10))
for n in range(len(labels)):
one_hot_labels[n, int(labels[n])] = 1
return one_hot_labels
def run_test(model, test_img):
preds = [np.argmax(model(img)) for img in test_img]
return preds
def acc_score(pred, label):
return sum([1 if p == l else 0 for p, l in zip(pred, label)]) / len(label)
if __name__ == '__main__':
batch_size = 128
lr = 0.001
max_epochs = 20
train_img = np.array(pd.read_csv('train_image.csv', header=None), dtype=np.float32)
train_label = np.array(pd.read_csv('train_label.csv', header=None), dtype=np.float32)
test_img = np.array(pd.read_csv('test_image.csv', header=None), dtype=np.float32)
test_label = np.array(pd.read_csv('test_label.csv', header=None), dtype=np.float32)
# normalize
train_img /= 255
test_img /= 255
# shuffle training set and label
train_set = np.concatenate((train_img, train_label), axis=1)
np.random.shuffle(train_set)
# split train val
split = int(len(train_set) * 0.9)
train_set, val_set = train_set[:split], train_set[split:]
train_img, train_label = augment_data(train_set[:, :-1], train_set[:, -1])
val_img, val_label = val_set[:, :-1], val_set[:, -1]
# create batch
train_data = []
for i in range(0, len(train_label), batch_size):
imgs = train_img[i:i + batch_size]
labels = train_label[i:i + batch_size]
one_hot_labels = make_one_hot(labels)
train_data.append((imgs, one_hot_labels))
# train
model = MLP(hidden_dims=[1024, 1024, 10], lr=lr, beta1=0.9, beta2=0.999)
best_val, best_model = 0, deepcopy(model)
for e in range(max_epochs):
random.shuffle(train_data)
epoch_loss = []
for inputs, targets in tqdm(train_data):
outputs = model(inputs)
loss = model.compute_loss(outputs, targets)
model.update()
epoch_loss.append(loss)
model.optimizer.step += 1
model.zero_grad()
# validation
val_pred = run_test(model=model, test_img=val_img)
val_acc = acc_score(val_pred, val_label)
print('Epoch %d, avg loss %f, val acc %f' % (e, np.average(epoch_loss), val_acc))
# early termination
if val_acc > best_val:
best_val = val_acc
best_model = deepcopy(model)
elif val_acc < best_val - 0.005:
print('Early termination at epoch', e)
break
pred_label = run_test(model=best_model, test_img=test_img)
# test_acc = acc_score(pred_label, np.squeeze(test_label))
# print('Test acc:', test_acc)
# output
with open('test_predictions.csv', 'w') as f:
res = ""
for n in pred_label:
res += str(int(n)) + '\n'
f.write(res[:-1])