Almost all steps are the same as the mmdet3d.
superpoint generatation
- VCCS
- Install pclpy.
# python 3.8.16
conda install -c conda-forge/label/gcc7 qhull
conda install -c conda-forge -c davidcaron pclpy
- In this directory, extract superpoint run
python slic_function_multi_processing.py
.
or
- SPG/SSP
- You can use SPG/SSP to generate superpoints like s3dis.
In our experiment, we use VCCS.
Then
python tools/create_data.py sunrgbd --root-path ./data/sunrgbd --out-dir ./data/sunrgbd --extra-tag sunrgbd
The directory structure after pre-processing should be as below
sunrgbd
├── README.md
├── matlab
│ ├── extract_rgbd_data_v1.m
│ ├── extract_rgbd_data_v2.m
│ ├── extract_split.m
├── OFFICIAL_SUNRGBD
│ ├── SUNRGBD
│ ├── SUNRGBDMeta2DBB_v2.mat
│ ├── SNRGBDMeta3DBB_v2.mat
│ ├── SUNRGBDtoolbox
├── sunrgbd_trainval
│ ├── calib
│ ├── depth
│ ├── image
│ ├── label
│ ├── label_v1
│ ├── seg_label
│ ├── train_data_idx.txt
│ ├── val_data_idx.txt
├── points
├── superpoints
├── sunrgbd_infos_train.pkl
├── sunrgbd_infos_val.pkl