-
Notifications
You must be signed in to change notification settings - Fork 10
/
Open_Access_Control_Ethernet.ino
1648 lines (1391 loc) · 54.6 KB
/
Open_Access_Control_Ethernet.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Open Source RFID Access Controller - Ethernet Branch
*
* 12/01/2013 v0.06 (branch based on upstream 4/3/2011 v1.32)
* Will Bradley - [email protected]
* Short Tie - [email protected]
*
* Upstream:
* Last build test with Arduino v00.21
* Arclight - [email protected]
* Danozano - [email protected]
*
* Notice: This is free software and is probably buggy. Use it at
* at your own peril. Use of this software may result in your
* doors being left open, your stuff going missing, or buggery by
* high seas pirates. No warranties are expressed on implied.
* You are warned.
*
* For latest downloads of this ETHERNET branch, check out
* https://github.com/zyphlar/Open_Access_Control_Ethernet
*
* For latest downloads of the UPSTREAM software, including
* Eagle CAD files for the hardware, check out
* http://code.google.com/p/open-access-control/downloads/list
*
*
* This program interfaces the Arduino to RFID, PIN pad and all
* other input devices using the Wiegand-26 Communications
* Protocol. It is recommended that the keypad inputs be
* opto-isolated in case a malicious user shorts out the
* input device.
* Outputs go to a Darlington relay driver array for door hardware/etc control.
* Analog inputs are used for alarm sensor monitoring. These should be
* isolated as well, since many sensors use +12V. Note that resistors of
* different values can be used on each zone to detect shorting of the sensor
* or wiring.
*
* Version 1.00+ of the hardware implements these features and uses the following pin
* assignments on a standard Arduino Duemilanova or Uno:
*
* Relay outpus on digital pins 6,7,8,9
* DS1307 Real Time Clock (I2C):A4 (SDA), A5 (SCL)
* Analog pins (for alarm):A0,A1,A2,A3
* Reader 1: pins 2,3
* Reader 2: pins 4,5
* Ethernet: pins 10,11,12,13 (Not connected to the board, reserved for the Ethernet shield)
*
* Quickstart tips:
* Set the privilege password(PRIVPASSWORD) value to a numeric DEC or HEX value.
* Define the static user list by swiping a tag and copying the value received into the #define values shown below under Adam, Bob, and Carl.
* Change MAC and IP as appropriate for your network.
* Compile and upload the code, then log in via HTTP to the IP you specified.
*
* Guide to log keys and data:
* A=alarm armed (# level)
* a=added user (# usernum)
* C=keypad command (# command)
* c=second half
* c=checked user (0=failed, #=found usernum)
* D=denied access (# card num)
* d=second half
* d=deleted user (# usernum)
* E=second (#=second)
* F=priv fail (0=wrong pw, 1=too many attempts, 2=not logged in)
* f=second half
* f=card fail (#=usermask)
* G=granted access (# card num)
* g=second half of card
* H=hour (#=hour)
* i=attempt to write to invalid eeprom address (# usernum)
* I=attempt to delete from invalid eeprom address (# usernum)
* L=locked (1=door1, 2=door2, 3=bedtime)
* M=minute (#=minute)
* m=alarm state (# level)
* p=power on (reboot)
* R=read tag (# card num)
* r=second half of tag
* Q=superuser authed (#=superuser)
* S=auth (0=privileged mode enabled)
* s=alarm sensor (# zone)
* t=alarm trained (#=sensor value)
* T=alarm triggered (0)
* U=unlocked door (1=door1, 2=door2)
* Z=user db cleared (0)
* z=log cleared (0)
* Log Format:
* H M E
*/
#include <Wire.h> // Needed for I2C Connection to the DS1307 date/time chip
#include <EEPROM.h> // Needed for saving to non-voilatile memory on the Arduino.
#include <avr/pgmspace.h> // Allows data to be stored in FLASH instead of RAM
#include <Ethernet.h> // Ethernet stuff
#include <SPI.h>
#include <DS1307.h> // DS1307 RTC Clock/Date/Time chip library
#include <WIEGAND26.h> // Wiegand 26 reader format libary
#include <PCATTACH.h> // Pcint.h implementation, allows for >2 software interupts.
//-------- begin user config section --------
#define DEBUG 2 // Set to 2 for display of raw tag numbers in log files, 1 for only denied, 0 for never.
#define adam 0xABCDE // Name and badge number in HEX. We are not using checksums or site ID, just the whole
#define bob 0xBCDEF // output string from the reader.
#define carl 0xA1B2C3
const long superUserList[] = { adam, bob, carl}; // Super user table (cannot be changed by software)
#define PRIVPASSWORD 0x1234 // Console "priveleged mode" password
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192,168,1,177);
//-------- end user config section --------
#define DOORDELAY 5000 // How long to open door lock once access is granted. (2500 = 2.5s)
#define SENSORTHRESHOLD 100 // Analog sensor change that will trigger an alarm (0..255)
#define NUM_SENSORS 4 // The number of sensors
#define EEPROM_ALARM 0 // EEPROM address to store alarm triggered state between reboots (0..511)
#define EEPROM_ALARMARMED 1 // EEPROM address to store alarm armed state between reboots
#define EEPROM_ALARMZONES 20 // Starting address to store "normal" analog values for alarm zone sensor reads.
#define KEYPADTIMEOUT 5000 // Timeout for pin pad entry. Users on keypads can enter commands after reader swipe.
#define EEPROM_FIRSTUSER 24
#define EEPROM_LASTUSER 1024
#define NUMUSERS ((EEPROM_LASTUSER - EEPROM_FIRSTUSER)/5) //Define number of internal users (200 for UNO/Duemillanova)
#define DOORPIN1 relayPins[0] // Define the pin for electrified door 1 hardware
#define DOORPIN2 relayPins[2] // Define the pin for electrified door 2 hardware
#define ALARMSTROBEPIN relayPins[3] // Define the "non alarm: output pin. Can go to a strobe, small chime, etc
#define ALARMSIRENPIN relayPins[1] // Define the alarm siren pin. This should be a LOUD siren for alarm purposes.
/* Definitions for Log types */
#define LOG_REBOOT 0
#define LOG_CHIME 1
#define LOG_TAG_PRESENT 2
#define LOG_ACCESS_GRANTED 3
#define LOG_ACCESS_DENIED 4
#define LOG_KEYPAD_COMMAND 5
#define LOG_ALARM_ZONE 6
#define LOG_ALARM_TRIGGERED 7
#define LOG_UNLOCK 8
#define LOG_LOCK 9
#define LOG_ALARM_STATE 10
#define LOG_ALARM_ARMED 11
#define LOG_PRIVELEDGE_FAILED 12
#define LOG_ALARM_TRAIN 13
#define LOG_SUPERUSER 14
#define LOG_HARDWARE_TEST 15
#define LOG_CLEAR_USERS 16
#define LOG_ADD_USER_FAIL 17
#define LOG_ADD_USER_SUCCESS 18
#define LOG_DELETE_USER_FAIL 19
#define LOG_DELETE_USER_SUCCESS 20
#define LOG_CHECK_USER 21
#define LOG_LOGIN_FAIL 22
#define LOG_LOGIN_SUCCESS 23
#define LOG_LOCKED_OUT_USER 24
#define LOG_CLEAR_LOG 25
/* Definitions for LOG_PRIVILEDGE_FAILED */
#define WRONG_PASSWORD 0
#define TOO_MANY_TRIES 1
#define NOT_LOGGED_IN 2
/* Defintions for LOG_LOCK */
#define DOOR1 1
#define DOOR2 2
#define BEDTIME 3
byte reader1Pins[]={2,3}; // Reader 1 connected to pins 4,5
byte reader2Pins[]= {4,5}; // Reader2 connected to pins 6,7
//byte reader3Pins[]= {10,11}; // Reader3 connected to pins X,Y (Not implemented on v1.x and 2.x Access Control Board)
const byte analogsensorPins[] = {0,1,2,3}; // Alarm Sensors connected to other analog pins
const byte relayPins[]= {6,7,8,9}; // Relay output pins
bool door1Locked=true; // Keeps track of whether the doors are supposed to be locked right now
bool door2Locked=true;
unsigned long door1locktimer=0; // Keep track of when door is supposed to be relocked
unsigned long door2locktimer=0; // after access granted.
boolean doorChime=false; // Keep track of when door chime last activated
boolean doorClosed=false; // Keep track of when door last closed for exit delay
unsigned long alarmDelay=0; // Keep track of alarm delay. Used for "delayed activation" or level 2 alarm.
unsigned long alarmSirenTimer=0; // Keep track of how long alarm has gone off
unsigned long consolefailTimer=0; // Console password timer for failed logins
byte consoleFail=0;
#define numUsers (sizeof(superUserList)/sizeof(long)) //User access array size (used in later loops/etc)
#define NUMDOORS (sizeof(doorPin)/sizeof(byte)) //TODO: NUMDOORS isn't used and doorPin isn't defined... remove?
#define numAlarmPins (sizeof(analogsensorPins)/sizeof(byte))
//Other global variables
byte second, minute, hour, dayOfWeek, dayOfMonth, month, year; // Global RTC clock variables. Can be set using DS1307.getDate function.
byte alarmActivated = EEPROM.read(EEPROM_ALARM); // Read the last alarm state as saved in eeprom.
byte alarmArmed = EEPROM.read(EEPROM_ALARMARMED); // Alarm level variable (0..5, 0==OFF)
boolean sensor[NUM_SENSORS]={false}; // Keep track of tripped sensors, do not log again until reset.
unsigned long sensorDelay[2]={0}; // Same as above, but sets a timer for 2 of them. Useful for logging
// motion detector hits for "occupancy check" functions.
// Enable up to 3 door access readers.
volatile long reader1 = 0;
volatile int reader1Count = 0;
volatile long reader2 = 0;
volatile int reader2Count = 0;
int userMask=0;
boolean keypadGranted=0; // Variable that is set for authenticated users to use keypad after login
//volatile long reader3 = 0; // Uncomment if using a third reader.
//volatile int reader3Count = 0;
unsigned long keypadTime = 0; // Timeout counter for reader with key pad
unsigned long keypadValue=0;
boolean privmodeEnabled = false; // Switch for enabling "priveleged" commands
// Log buffer
int logLevel=2;
char logKeys[40]={0};
int logData[40]={0};
int logCursor=0;
// Initialize the Ethernet server library
// with the IP address and port you want to use
// (port 80 is default for HTTP):
EthernetServer server(80);
/* Create an instance of the various C++ libraries we are using.
*/
DS1307 ds1307; // RTC Instance
WIEGAND26 wiegand26; // Wiegand26 (RFID reader serial protocol) library
PCATTACH pcattach; // Software interrupt library
/* Set up some strings that will live in flash instead of memory. This saves our precious 2k of
* RAM for something else.
*/
const unsigned char httpheaderok[] PROGMEM = {"HTTP/1.1 200 OK\r\nCache-Control: no-store\r\nContent-Type: text/html\r\n\r\n"};
const unsigned char title[] PROGMEM = {"<h2>Open Access Control</h2>"};
const unsigned char help[] PROGMEM = {"<hr/>See help[] source for command syntax (https://github.com/zyphlar/Open_Access_Control_Ethernet)."}; //<pre>Numbers must be padded.\n\n?e=0000 - enable priv (0 to logout)\n?s000 - show user\n?m000&p000&t00000000 - modify user(0-200) perm(0-255) tag(0-f)\n?a - list all\n?r000 - remove user\n?o1 ?o2 - open door 1/2\n?u ?u=1 ?u=2 - unlock all/1/2\n?l ?l=1 ?l=2 - lock all/1/2\n?1 - disarm\n?2 - arm\n?3 - train\n?9 - status\n?z - show log\n?y - clear log\n?w0000000000000 - show year-month-day-dayofweek-hour-min-sec\n?x - set year-month-day-dayofweek-hour-min-sec\n?v=0 ?v=1 ?v=2 ?v=3 - set logging to MostVerbose/Verbose/Quiet/MostQuiet</pre>"};
const unsigned char noauth[] PROGMEM = {"<a href='/'>Not logged in.</a>"};
const unsigned char unlockboth[] PROGMEM = {"Unlocked all."};
const unsigned char unlock1[] PROGMEM = {"Unlocked 1."};
const unsigned char unlock2[] PROGMEM = {"Unlocked 2."};
const unsigned char open1[] PROGMEM = {"Opened 1."};
const unsigned char open2[] PROGMEM = {"Opened 2."};
const unsigned char lockboth[] PROGMEM = {"Locked all."};
const int divisor = 32767;
void setup(){ // Runs once at Arduino boot-up
// start the Ethernet connection and the server:
Ethernet.begin(mac, ip);
server.begin();
Wire.begin(); // start Wire library as I2C-Bus Master
/* Attach pin change interrupt service routines from the Wiegand RFID readers
*/
pcattach.PCattachInterrupt(reader1Pins[0], callReader1Zero, CHANGE);
pcattach.PCattachInterrupt(reader1Pins[1], callReader1One, CHANGE);
pcattach.PCattachInterrupt(reader2Pins[1], callReader2One, CHANGE);
pcattach.PCattachInterrupt(reader2Pins[0], callReader2Zero, CHANGE);
//Clear and initialize readers
wiegand26.initReaderOne(); //Set up Reader 1 and clear buffers.
wiegand26.initReaderTwo();
//Initialize output relays
for(byte i=0; i<4; i++){
pinMode(relayPins[i], OUTPUT);
digitalWrite(relayPins[i], LOW); // Sets the relay outputs to LOW (relays off)
}
// Serial.begin(57600); // Set up Serial output at 8,N,1,57600bps
log(LOG_REBOOT, 0, 0);
chirpAlarm(1); // Chirp the alarm to show system ready.
// hardwareTest(100); // IO Pin testing routing (use to check your inputs with hi/lo +(5-12V) sources)
// Also checks relays
}
void loop() // Main branch, runs over and over again
{
// listen for incoming clients
EthernetClient client = server.available();
String readString = String(100); //string for fetching data from address
if (client) {
// an http request ends with a blank line
boolean currentLineIsBlank = true;
while (client.connected()) {
if (client.available()) {
char c = client.read();
//read char by char HTTP request
if (readString.length() < 100) {
//store characters to string
readString += c;
}
// if you've gotten to the end of the line (received a newline
// character) and the line is blank, the http request has ended,
// so you can send a reply
if (c == '\n' && currentLineIsBlank) {
PROGMEMprintln(client,httpheaderok);
if(readString.indexOf("?") < 0) {
PROGMEMprintln(client,title);
PROGMEMprintln(client,help);
}
else {
if(readString.indexOf("?e=") > 0 || readString.indexOf("&e=") > 0) { // login
int offset = readString.indexOf("e=");
char pass[5] = {readString[offset+2],readString[offset+3],readString[offset+4],readString[offset+5],'\0'};
if(login(strtoul(pass,NULL,16))) {
client.println("authok");
}
else {
client.println("authfail");
break; // we don't need extra errors below; we already know about the authfail.
}
}
if(privmodeEnabled==true) {
switch(readString[readString.indexOf("?")+1]){
case 's': { // show user
int offset = readString.indexOf("?s");
char usernum[4] = {readString[offset+2],readString[offset+3],readString[offset+4],'\0'};
client.println("<pre>");
client.print("UserNum:");
client.print(" ");
client.print("Usermask:");
client.print(" ");
client.println("TagNum:");
dumpUser(client, atoi(usernum));
client.println("</pre>");
break;
}
case 'm': { // modify user #, permission #, tag # (?m000&p000&t00000000 must be zero-padded)
int offset = readString.indexOf("?m"); // user, 3 chars
int initialoffset = offset; // save for comparison
char usernum[4] = {readString[offset+2],readString[offset+3],readString[offset+4],'\0'};
offset = readString.indexOf("&p"); // permissions mask, 3 chars
char usermask[4] = {readString[offset+2],readString[offset+3],readString[offset+4],'\0'};
offset = readString.indexOf("&t"); // tag, 8 chars
char usertag[9] = {readString[offset+2],readString[offset+3],readString[offset+4],readString[offset+5],
readString[offset+6],readString[offset+7],readString[offset+8],readString[offset+9],'\0'};
if(offset-initialoffset == 10){
client.println("<pre>");
client.println("prev:");
dumpUser(client, atoi(usernum));
addUser(atoi(usernum), atoi(usermask), strtoul(usertag,NULL,16));
client.println("cur:");
dumpUser(client, atoi(usernum));
client.println("</pre>");
}
else {
client.println("err:query");
}
break;
}
case 'a': { //list all users
client.println("<pre>");
client.print("UserNum:");
client.print(" ");
client.print("Usermask:");
client.print(" ");
client.println("TagNum:");
for(int i=0; i<(NUMUSERS); i++){
dumpUser(client,i);
}
client.println("</pre>");
break;
}
case 'r': { //remove user (?r000)
int offset = readString.indexOf("?r");
char usernum[4] = {readString[offset+2],readString[offset+3],readString[offset+4],'\0'};
client.println("r");
client.println("<pre>");
client.println("prev:");
dumpUser(client,atoi(usernum));
deleteUser(atoi(usernum));
client.println("cur:");
dumpUser(client,atoi(usernum));
break;
}
case 'o': { // open door ?o1 or ?o2
int offset = readString.indexOf("?o");
if(readString[offset+2] == '1'){
alarmState(0); // Set to door chime only/open doors
armAlarm(4);
doorUnlock(1); // Open the door specified
door1locktimer=millis();
PROGMEMprintln(client,open1);
}
else{
if(readString[offset+2] == '2'){
alarmState(0); // Set to door chime only/open doors
armAlarm(4);
doorUnlock(2);
door2locktimer=millis();
PROGMEMprintln(client,open2);
}
else {
client.println("err:door#");
}
}
break;
}
case 'u': { //unlock (?u or ?u=1 or ?u=2)
int offset = readString.indexOf("?u="); // see if we're unlocking a specific door
if(offset > 0) {
if(readString[offset+3] == '1'){
doorUnlock(1);
alarmState(0);
armAlarm(4);
door1Locked=false;
chirpAlarm(3);
PROGMEMprintln(client,unlock1);
}
else {
if(readString[offset+3] == '2'){
doorUnlock(2);
alarmState(0);
armAlarm(4);
door2Locked=false;
chirpAlarm(3);
PROGMEMprintln(client,unlock2);
}
else {
client.println("err:door#");
}
}
}
else { // not unlocking a specific door; unlock all.
PROGMEMprintln(client,unlockboth);
unlockall();
}
printStatus(client);
break;
}
case 'l': { //lock (?l or ?l=1 or ?l=2)
int offset = readString.indexOf("?l="); // see if we're unlocking a specific door
if(offset > 0) {
if(readString[offset+3] == '1'){
doorLock(1);
door1Locked=true;
chirpAlarm(3);
}
else if(readString[offset+3] == '2'){
doorLock(2);
door2Locked=true;
chirpAlarm(3);
}
else {
lockall();
chirpAlarm(1);
PROGMEMprintln(client,lockboth);
}
}
else { // not unlocking a specific door; unlock all.
PROGMEMprintln(client,lockboth);
lockall();
}
printStatus(client);
break;
}
case '1': { // disarm
armAlarm(0);
alarmState(0);
chirpAlarm(1);
printStatus(client);
break;
}
case '2': { // arm
chirpAlarm(20); // 200 chirps = ~30 seconds delay
armAlarm(1);
printStatus(client);
break;
}
case '3': { // train
trainAlarm();
printStatus(client);
break;
}
case 'z': { // log
printLog(client);
break;
}
case 'y': { // clear log
for(int i=0;i<sizeof(logKeys);i++) {
logKeys[i] = 0;
logData[i] = 0;
}
logCursor = 0;
log(LOG_CLEAR_LOG, 0,0);
client.println("y");
break;
}
case 'w': { // Print out the date - "YYMMDDWHHmmSS"
ds1307.getDateDs1307(&second, &minute, &hour, &dayOfWeek, &dayOfMonth, &month, &year);
client.print(year, DEC);
client.print(month, DEC);
client.print(dayOfMonth, DEC);
client.print(dayOfWeek, DEC);
client.print(hour, DEC);
client.print(minute, DEC);
client.print(second, DEC);
}
case 'x': { // Assign date/time format (?xYYMMDDWHHmmSS)
int offset = readString.indexOf("?x");
char year[3] = {readString[offset+2],readString[offset+3],'\0'};
char mon[3] = {readString[offset+4],readString[offset+5],'\0'};
char dom[3] = {readString[offset+6],readString[offset+7],'\0'};
byte dow = {readString[offset+8]};
char hour[3] = {readString[offset+9],readString[offset+10],'\0'};
char minute[3] = {readString[offset+11],readString[offset+12],'\0'};
char sec[3] = {readString[offset+13],readString[offset+14],'\0'};
ds1307.setDateDs1307(atoi(sec),atoi(minute),atoi(hour),dow,atoi(dom),atoi(mon),atoi(year));
/* Sets the date/time (needed once at commissioning)
byte second, // 0-59
byte minute, // 0-59
byte hour, // 1-23
byte dayOfWeek, // 1-7
byte dayOfMonth, // 1-28/29/30/31
byte month, // 1-12
byte year); // 0-99
*/
break;
}
case 'v': { // Change the amount of data recorded to the log
int offset = readString.indexOf("?v=");
switch(readString[offset+2]){
case '0':{
logLevel = 0; // 0 - Most Verbose
break;
}
case '1':{
logLevel = 1; // 1 - Verbose
break;
}
case '2':{
logLevel = 2; // 2 - Quiet
break;
}
case '3':{
logLevel = 3; // 3 - Most Quiet
break;
}
default: { }
}
break;
}
case '9': {
printStatus(client);
}
default: {}
} // End switch on query letter
} // End Calls that require authentization
/* Calls that do not require authentation */
else{
if(readString.indexOf("?9") > 0) { // status
printStatus(client);
}
else{
PROGMEMprintln(client,noauth);
log(LOG_PRIVELEDGE_FAILED, 0, NOT_LOGGED_IN);
}
} // End calls that do not require authentication
if(readString.indexOf("&e=") > 0) { // if e is passed as a second parameter, log out.
login(strtoul("0000",NULL,16)); // 0000 = logout
}
} // End readString has query portion
break;
}
if (c == '\n') {
// you're starting a new line
currentLineIsBlank = true;
}
else if (c != '\r') {
// you've gotten a character on the current line
currentLineIsBlank = false;
}
}
}
// give the web browser time to receive the data
delay(1);
// close the connection:
client.stop();
}
/* Check if doors are supposed to be locked and lock/unlock them
* if needed. Uses global variables that can be set in other functions.
*/
if(((millis() - door1locktimer) >= DOORDELAY) && (door1locktimer !=0))
{
if(door1Locked==true){
doorLock(1);
door1locktimer=0; }
else {
doorUnlock(1);
door1locktimer=0;
}
}
if(((millis() - door2locktimer) >= DOORDELAY) && (door2locktimer !=0))
{
if(door2Locked==true) {
doorLock(2);
door2locktimer=0;
}
else {
doorUnlock(2);
door2locktimer=0;
}
}
// Notes: RFID polling is interrupt driven, just test for the reader1Count value to climb to the bit length of the key
// change reader1Count & reader1 et. al. to arrays for loop handling of multiple reader output events
// later change them for interrupt handling as well!
// currently hardcoded for a single reader unit
/* This code checks a reader with a 26-bit keycard input. Use the second routine for readers with keypads.
* A 5-second window for commands is opened after each successful key access read.
*/
if(reader1Count >= 26) { // When tag presented to reader1 (No keypad on this reader)
processTagAccess(reader1, 1);
}
if(reader2Count >= 26){ // Tag presented to reader 2
processTagAccess(reader2, 2);
}
/* Check physical sensors with
the logic below. Behavior is based on
the current alarmArmed value.
0=disarmed
1=armed
2=
3=
4=door chime only (Unlock DOOR1, Check zone 0/chirp alarm if active)
Modify the alarm sequence to meet your needs.
*/
switch(alarmArmed) {
case 0:
{
break; // Alarm is not armed, do nothing.
}
case 1: // Alarm is armed
{
if(alarmActivated==0){ // If alarm is armed but not currently alarming, check sensor zones.
for(int i=0; i<NUM_SENSORS; i++) { // For each of the Sensors Check their status
if(pollAlarm(i) == 1 ){
if(i == 0 || i == 3){ // If zone 0 or 3 are tripped, immediately set Alarm State to 2 (alarm delay).
alarmState(2); // Also starts the delay timer
alarmDelay=millis();
}
else {
alarmState(1); // Otherwise, immediately set Alarm State to 1 (alarm immediate).
}
if(sensor[i]==false) { // Only log and save if sensor activation is new.
log(LOG_ALARM_ZONE,0,i);
EEPROM.write(EEPROM_ALARM,i); // Save the alarm sensor tripped to eeprom
sensor[i]=true; // Set value to not log this again
}
}
}
}
if(alarmActivated==1) { // If alarm is actively going off (siren/strobe) for 10 min (6e5=10min)
if(millis()-alarmSirenTimer >=3.6e6) // Check for alarm interval expired and turn off if needed
{
digitalWrite(ALARMSIRENPIN,LOW); // Turn on the chime instead
digitalWrite(ALARMSTROBEPIN,HIGH);
}
}
if(alarmActivated==2) { // If alarm is activated on delay, take this action
if(millis()-alarmDelay >=60000) // Turn on the siren once delay exceeds 60sec.
{
alarmState(1);
}
}
break;
}
case 4:
{ // Door chime mode
if((pollAlarm(3) !=0) && (doorChime==false)) { // Only activate door chime once per opening
chirpAlarm(3);
log(LOG_CHIME, 0, 0);
doorChime=true;
}
if(pollAlarm(3) ==0){
doorChime=false; }
break;
}
default:
{
break;
}
}
// Log all motion detector activations (currently 0,1) regardless of alarm armed state. Useful for "occupancy detection"
for(int i=0; i<2; i++){
if(pollAlarm(i) == 1 ){ // If this zone is tripped, log the action only
// If the sensor has triggered but not in the last 7.5s. This will not log continual movement, only new movement.
if(sensor[i]==false && ((millis() - sensorDelay[i]) >=7500 )){
log(LOG_ALARM_ZONE,0,i);
sensorDelay[i]=millis();
sensor[i]=true;
}
}
else if (pollAlarm(i) == 0){
sensor[i]=false;
}
}
} // End of loop()
void runCommand(long command) { // Run any commands entered at the pin pad.
switch(command) {
case 0x1:
{ // If command = 1, deactivate alarm
alarmState(0); // Set global alarm level variable
armAlarm(0);
chirpAlarm(1);
break;
}
case 0x2:
{ // If command =2, activate alarm with delay.
doorUnlock(1); // Set global alarm level variable
door1Locked=false;
doorClosed=false; // 200 chirps = ~30 seconds delay
if((pollAlarm(3) == 0) && (pollAlarm(2) == 0)) { // Do not arm the alarm if doors are open
for(byte i=0; i<30; i++) {
if((pollAlarm(3) !=0) && doorClosed==false) { // Set door to be unlocked until alarm timeout or user exits
lockall();
doorClosed=true;
}
digitalWrite(ALARMSTROBEPIN, HIGH);
delay(500);
digitalWrite(ALARMSTROBEPIN, LOW);
delay(500);
}
chirpAlarm(2);
armAlarm(1);
lockall(); // Lock all doors on exit
}
else { // Beep the alarm once and exit if attempt made to arm alarm with doors open
digitalWrite(ALARMSTROBEPIN, HIGH);
delay(500);
digitalWrite(ALARMSTROBEPIN, LOW);
delay(500);
lockall(); // Lock all doors anyway
}
break;
}
case 0x3:
{
doorLock(1); // Set door 2 to stay unlocked, and door 1 to be locked
doorUnlock(2);
door1Locked=true;
door2Locked=false;
chirpAlarm(3);
break;
}
case 0x4: // Set doors to remain open
{
armAlarm(4);
doorUnlock(1);
doorUnlock(2);
door1Locked=false;
door2Locked=false;
chirpAlarm(4);
break;
}
case 0x5: // Relock all doors
{
lockall();
chirpAlarm(5);
break;
}
case 0x911:
{
chirpAlarm(9); // Emergency
armAlarm(1);
alarmState(1);
break;
}
case 0x20:
{ // If command = 20, do nothing
break;
}
default:
{
break;
}
}
}
/* Alarm System Functions - Modify these as needed for your application.
Sensor zones may be polled with digital or analog pins. Unique reader2
resistors can be used to check more zones from the analog pins.
*/
void alarmState(byte alarmLevel) { //Changes the alarm status based on this flow
log(LOG_ALARM_STATE, 0, alarmLevel);
switch (alarmLevel) {
case 0:
{ // If alarmLevel == 0 turn off alarm.
digitalWrite(ALARMSIRENPIN, LOW);
digitalWrite(ALARMSTROBEPIN, LOW);
alarmActivated = alarmLevel; //Set global alarm level variable
break;
}
case 1:
{
digitalWrite(ALARMSIRENPIN, HIGH); // If alarmLevel == 1 turn on strobe lights and siren
// digitalWrite(ALARMSTROBEPIN, HIGH); // Optionally activate yoru strobe/chome
alarmSirenTimer=millis();
alarmActivated = alarmLevel; //Set global alarm level variable
log(LOG_ALARM_TRIGGERED, 0, 0);
break;
}
case 2:
{
digitalWrite(ALARMSTROBEPIN, HIGH);
alarmActivated = alarmLevel;
break;
}
case 3:
{
alarmActivated = alarmLevel;
break;
}
/*
case 4: {
vaporize_intruders(STUN);
break;
}
case 5: {
vaporize_intruders(MAIM);
} etc. etc. etc.
break;
*/
default:
{ // Exceptional cases kill alarm outputs
digitalWrite(ALARMSIRENPIN, LOW); // Turn off siren and strobe
// digitalWrite(ALARMSTROBEPIN, LOW);
break;
}
}
if(alarmActivated != EEPROM.read(EEPROM_ALARM)){ // Update eeprom value
EEPROM.write(EEPROM_ALARM,alarmActivated);
}
} //End of alarmState()
void chirpAlarm(byte chirps){ // Chirp the siren pin or strobe to indicate events.
for(byte i=0; i<chirps; i++) {
digitalWrite(ALARMSTROBEPIN, HIGH);
delay(100);
digitalWrite(ALARMSTROBEPIN, LOW);
delay(200);
}
}
byte pollAlarm(byte input){
// Return 1 if sensor shows < pre-defined voltage.
delay(20);
if(abs((analogRead(analogsensorPins[input])/4) - EEPROM.read(EEPROM_ALARMZONES+input)) >SENSORTHRESHOLD){
return 1;
}
else return 0;
}
void trainAlarm(){ // Train the system about the default states of the alarm pins.
armAlarm(0); // Disarm alarm first
alarmState(0);
int temp[5]={0};
int avg;
for(int i=0; i<numAlarmPins; i++) {
for(int j=0; j<5;j++){
temp[j]=analogRead(analogsensorPins[i]);
delay(50); // Give the readings time to settle
}
avg=((temp[0]+temp[1]+temp[2]+temp[3]+temp[4])/20); // Average the results to get best values
log(LOG_ALARM_TRAIN, avg,i);
EEPROM.write((EEPROM_ALARMZONES+i),byte(avg)); //Save results to EEPROM
avg=0;
}
}