-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter28.tex
1161 lines (1022 loc) · 36.5 KB
/
chapter28.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Segment trees revisited}
\index{segment tree}
A segment tree is a versatile data structure
that can be used to solve a large number of algorithm problems.
However, there are many topics related to segment trees
that we have not touched yet.
Now is time to discuss some more advanced variants
of segment trees.
So far, we have implemented the operations
of a segment tree by walking \emph{from bottom to top}
in the tree.
For example, we have calculated
range sums as follows (Chapter 9.3):
\begin{lstlisting}
int sum(int a, int b) {
a += n; b += n;
int s = 0;
while (a <= b) {
if (a%2 == 1) s += tree[a++];
if (b%2 == 0) s += tree[b--];
a /= 2; b /= 2;
}
return s;
}
\end{lstlisting}
However, in more advanced segment trees,
it is often necessary to implement the operations
in another way, \emph{from top to bottom}.
Using this approach, the function becomes as follows:
\begin{lstlisting}
int sum(int a, int b, int k, int x, int y) {
if (b < x || a > y) return 0;
if (a <= x && y <= b) return tree[k];
int d = (x+y)/2;
return sum(a,b,2*k,x,d) + sum(a,b,2*k+1,d+1,y);
}
\end{lstlisting}
Now we can calculate any value of $\texttt{sum}_q(a,b)$
(the sum of array values in range $[a,b]$) as follows:
\begin{lstlisting}
int s = sum(a, b, 1, 0, n-1);
\end{lstlisting}
The parameter $k$ indicates the current position
in \texttt{tree}.
Initially $k$ equals 1, because we begin
at the root of the tree.
The range $[x,y]$ corresponds to $k$
and is initially $[0,n-1]$.
When calculating the sum,
if $[x,y]$ is outside $[a,b]$,
the sum is 0,
and if $[x,y]$ is completely inside $[a,b]$,
the sum can be found in \texttt{tree}.
If $[x,y]$ is partially inside $[a,b]$,
the search continues recursively to the
left and right half of $[x,y]$.
The left half is $[x,d]$
and the right half is $[d+1,y]$
where $d=\lfloor \frac{x+y}{2} \rfloor$.
The following picture shows how the search proceeds
when calculating the value of $\texttt{sum}_q(a,b)$.
The gray nodes indicate nodes where the recursion
stops and the sum can be found in \texttt{tree}.
\begin{center}
\begin{tikzpicture}[scale=0.7]
\fill[color=gray!50] (5,0) rectangle (6,1);
\draw (0,0) grid (16,1);
\node[anchor=center] at (0.5, 0.5) {5};
\node[anchor=center] at (1.5, 0.5) {8};
\node[anchor=center] at (2.5, 0.5) {6};
\node[anchor=center] at (3.5, 0.5) {3};
\node[anchor=center] at (4.5, 0.5) {2};
\node[anchor=center] at (5.5, 0.5) {7};
\node[anchor=center] at (6.5, 0.5) {2};
\node[anchor=center] at (7.5, 0.5) {6};
\node[anchor=center] at (8.5, 0.5) {7};
\node[anchor=center] at (9.5, 0.5) {1};
\node[anchor=center] at (10.5, 0.5) {7};
\node[anchor=center] at (11.5, 0.5) {5};
\node[anchor=center] at (12.5, 0.5) {6};
\node[anchor=center] at (13.5, 0.5) {2};
\node[anchor=center] at (14.5, 0.5) {3};
\node[anchor=center] at (15.5, 0.5) {2};
%\node[anchor=center] at (1,2.5) {13};
\node[draw, circle] (a) at (1,2.5) {13};
\path[draw,thick,-] (a) -- (0.5,1);
\path[draw,thick,-] (a) -- (1.5,1);
\node[draw, circle,minimum size=22pt] (b) at (3,2.5) {9};
\path[draw,thick,-] (b) -- (2.5,1);
\path[draw,thick,-] (b) -- (3.5,1);
\node[draw, circle,minimum size=22pt] (c) at (5,2.5) {9};
\path[draw,thick,-] (c) -- (4.5,1);
\path[draw,thick,-] (c) -- (5.5,1);
\node[draw, circle,fill=gray!50,minimum size=22pt] (d) at (7,2.5) {8};
\path[draw,thick,-] (d) -- (6.5,1);
\path[draw,thick,-] (d) -- (7.5,1);
\node[draw, circle,minimum size=22pt] (e) at (9,2.5) {8};
\path[draw,thick,-] (e) -- (8.5,1);
\path[draw,thick,-] (e) -- (9.5,1);
\node[draw, circle] (f) at (11,2.5) {12};
\path[draw,thick,-] (f) -- (10.5,1);
\path[draw,thick,-] (f) -- (11.5,1);
\node[draw, circle,fill=gray!50,minimum size=22pt] (g) at (13,2.5) {8};
\path[draw,thick,-] (g) -- (12.5,1);
\path[draw,thick,-] (g) -- (13.5,1);
\node[draw, circle,minimum size=22pt] (h) at (15,2.5) {5};
\path[draw,thick,-] (h) -- (14.5,1);
\path[draw,thick,-] (h) -- (15.5,1);
\node[draw, circle] (i) at (2,4.5) {22};
\path[draw,thick,-] (i) -- (a);
\path[draw,thick,-] (i) -- (b);
\node[draw, circle] (j) at (6,4.5) {17};
\path[draw,thick,-] (j) -- (c);
\path[draw,thick,-] (j) -- (d);
\node[draw, circle,fill=gray!50] (k) at (10,4.5) {20};
\path[draw,thick,-] (k) -- (e);
\path[draw,thick,-] (k) -- (f);
\node[draw, circle] (l) at (14,4.5) {13};
\path[draw,thick,-] (l) -- (g);
\path[draw,thick,-] (l) -- (h);
\node[draw, circle] (m) at (4,6.5) {39};
\path[draw,thick,-] (m) -- (i);
\path[draw,thick,-] (m) -- (j);
\node[draw, circle] (n) at (12,6.5) {33};
\path[draw,thick,-] (n) -- (k);
\path[draw,thick,-] (n) -- (l);
\node[draw, circle] (o) at (8,8.5) {72};
\path[draw,thick,-] (o) -- (m);
\path[draw,thick,-] (o) -- (n);
\path[draw=red,thick,->,line width=2pt] (o) -- (m);
\path[draw=red,thick,->,line width=2pt] (o) -- (n);
\path[draw=red,thick,->,line width=2pt] (m) -- (j);
\path[draw=red,thick,->,line width=2pt] (j) -- (c);
\path[draw=red,thick,->,line width=2pt] (j) -- (d);
\path[draw=red,thick,->,line width=2pt] (c) -- (5.5,1);
\path[draw=red,thick,->,line width=2pt] (n) -- (k);
\path[draw=red,thick,->,line width=2pt] (n) -- (l);
\path[draw=red,thick,->,line width=2pt] (l) -- (g);
\draw [decoration={brace}, decorate, line width=0.5mm] (14,-0.25) -- (5,-0.25);
\node at (5.5,-0.75) {$a$};
\node at (13.5,-0.75) {$b$};
\end{tikzpicture}
\end{center}
Also in this implementation,
operations take $O(\log n)$ time,
because the total number of visited nodes is $O(\log n)$.
\section{Lazy propagation}
\index{lazy propagation}
\index{lazy segment tree}
Using \key{lazy propagation}, we can build
a segment tree that supports \emph{both} range updates
and range queries in $O(\log n)$ time.
The idea is to perform updates and queries
from top to bottom and perform updates
\emph{lazily} so that they are propagated
down the tree only when it is necessary.
In a lazy segment tree, nodes contain two types of
information.
Like in an ordinary segment tree,
each node contains the sum or some other value
related to the corresponding subarray.
In addition, the node may contain information
related to lazy updates, which has not been
propagated to its children.
There are two types of range updates:
each array value in the range is either
\emph{increased} by some value
or \emph{assigned} some value.
Both operations can be implemented using
similar ideas, and it is even possible to construct
a tree that supports both operations at the same time.
\subsubsection{Lazy segment trees}
Let us consider an example where our goal is to
construct a segment tree that supports
two operations: increasing each value in
$[a,b]$ by a constant and calculating the sum of
values in $[a,b]$.
We will construct a tree where each node
has two values $s/z$:
$s$ denotes the sum of values in the range,
and $z$ denotes the value of a lazy update,
which means that all values in the range
should be increased by $z$.
In the following tree, $z=0$ in all nodes,
so there are no ongoing lazy updates.
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (16,1);
\node[anchor=center] at (0.5, 0.5) {5};
\node[anchor=center] at (1.5, 0.5) {8};
\node[anchor=center] at (2.5, 0.5) {6};
\node[anchor=center] at (3.5, 0.5) {3};
\node[anchor=center] at (4.5, 0.5) {2};
\node[anchor=center] at (5.5, 0.5) {7};
\node[anchor=center] at (6.5, 0.5) {2};
\node[anchor=center] at (7.5, 0.5) {6};
\node[anchor=center] at (8.5, 0.5) {7};
\node[anchor=center] at (9.5, 0.5) {1};
\node[anchor=center] at (10.5, 0.5) {7};
\node[anchor=center] at (11.5, 0.5) {5};
\node[anchor=center] at (12.5, 0.5) {6};
\node[anchor=center] at (13.5, 0.5) {2};
\node[anchor=center] at (14.5, 0.5) {3};
\node[anchor=center] at (15.5, 0.5) {2};
\node[draw, circle] (a) at (1,2.5) {13/0};
\path[draw,thick,-] (a) -- (0.5,1);
\path[draw,thick,-] (a) -- (1.5,1);
\node[draw, circle,minimum size=32pt] (b) at (3,2.5) {9/0};
\path[draw,thick,-] (b) -- (2.5,1);
\path[draw,thick,-] (b) -- (3.5,1);
\node[draw, circle,minimum size=32pt] (c) at (5,2.5) {9/0};
\path[draw,thick,-] (c) -- (4.5,1);
\path[draw,thick,-] (c) -- (5.5,1);
\node[draw, circle,minimum size=32pt] (d) at (7,2.5) {8/0};
\path[draw,thick,-] (d) -- (6.5,1);
\path[draw,thick,-] (d) -- (7.5,1);
\node[draw, circle,minimum size=32pt] (e) at (9,2.5) {8/0};
\path[draw,thick,-] (e) -- (8.5,1);
\path[draw,thick,-] (e) -- (9.5,1);
\node[draw, circle] (f) at (11,2.5) {12/0};
\path[draw,thick,-] (f) -- (10.5,1);
\path[draw,thick,-] (f) -- (11.5,1);
\node[draw, circle,minimum size=32pt] (g) at (13,2.5) {8/0};
\path[draw,thick,-] (g) -- (12.5,1);
\path[draw,thick,-] (g) -- (13.5,1);
\node[draw, circle,minimum size=32pt] (h) at (15,2.5) {5/0};
\path[draw,thick,-] (h) -- (14.5,1);
\path[draw,thick,-] (h) -- (15.5,1);
\node[draw, circle] (i) at (2,4.5) {22/0};
\path[draw,thick,-] (i) -- (a);
\path[draw,thick,-] (i) -- (b);
\node[draw, circle] (j) at (6,4.5) {17/0};
\path[draw,thick,-] (j) -- (c);
\path[draw,thick,-] (j) -- (d);
\node[draw, circle] (k) at (10,4.5) {20/0};
\path[draw,thick,-] (k) -- (e);
\path[draw,thick,-] (k) -- (f);
\node[draw, circle] (l) at (14,4.5) {13/0};
\path[draw,thick,-] (l) -- (g);
\path[draw,thick,-] (l) -- (h);
\node[draw, circle] (m) at (4,6.5) {39/0};
\path[draw,thick,-] (m) -- (i);
\path[draw,thick,-] (m) -- (j);
\node[draw, circle] (n) at (12,6.5) {33/0};
\path[draw,thick,-] (n) -- (k);
\path[draw,thick,-] (n) -- (l);
\node[draw, circle] (o) at (8,8.5) {72/0};
\path[draw,thick,-] (o) -- (m);
\path[draw,thick,-] (o) -- (n);
\end{tikzpicture}
\end{center}
When the elements in $[a,b]$ are increased by $u$,
we walk from the root towards the leaves
and modify the nodes of the tree as follows:
If the range $[x,y]$ of a node is
completely inside $[a,b]$,
we increase the $z$ value of the node by $u$ and stop.
If $[x,y]$ only partially belongs to $[a,b]$,
we increase the $s$ value of the node by $hu$,
where $h$ is the size of the intersection of $[a,b]$
and $[x,y]$, and continue our walk recursively in the tree.
For example, the following picture shows the tree after
increasing the elements in $[a,b]$ by 2:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\fill[color=gray!50] (5,0) rectangle (6,1);
\draw (0,0) grid (16,1);
\node[anchor=center] at (0.5, 0.5) {5};
\node[anchor=center] at (1.5, 0.5) {8};
\node[anchor=center] at (2.5, 0.5) {6};
\node[anchor=center] at (3.5, 0.5) {3};
\node[anchor=center] at (4.5, 0.5) {2};
\node[anchor=center] at (5.5, 0.5) {9};
\node[anchor=center] at (6.5, 0.5) {2};
\node[anchor=center] at (7.5, 0.5) {6};
\node[anchor=center] at (8.5, 0.5) {7};
\node[anchor=center] at (9.5, 0.5) {1};
\node[anchor=center] at (10.5, 0.5) {7};
\node[anchor=center] at (11.5, 0.5) {5};
\node[anchor=center] at (12.5, 0.5) {6};
\node[anchor=center] at (13.5, 0.5) {2};
\node[anchor=center] at (14.5, 0.5) {3};
\node[anchor=center] at (15.5, 0.5) {2};
\node[draw, circle] (a) at (1,2.5) {13/0};
\path[draw,thick,-] (a) -- (0.5,1);
\path[draw,thick,-] (a) -- (1.5,1);
\node[draw, circle,minimum size=32pt] (b) at (3,2.5) {9/0};
\path[draw,thick,-] (b) -- (2.5,1);
\path[draw,thick,-] (b) -- (3.5,1);
\node[draw, circle,minimum size=32pt] (c) at (5,2.5) {11/0};
\path[draw,thick,-] (c) -- (4.5,1);
\path[draw,thick,-] (c) -- (5.5,1);
\node[draw, circle,fill=gray!50,minimum size=32pt] (d) at (7,2.5) {8/2};
\path[draw,thick,-] (d) -- (6.5,1);
\path[draw,thick,-] (d) -- (7.5,1);
\node[draw, circle,minimum size=32pt] (e) at (9,2.5) {8/0};
\path[draw,thick,-] (e) -- (8.5,1);
\path[draw,thick,-] (e) -- (9.5,1);
\node[draw, circle] (f) at (11,2.5) {12/0};
\path[draw,thick,-] (f) -- (10.5,1);
\path[draw,thick,-] (f) -- (11.5,1);
\node[draw, circle,fill=gray!50,minimum size=32pt] (g) at (13,2.5) {8/2};
\path[draw,thick,-] (g) -- (12.5,1);
\path[draw,thick,-] (g) -- (13.5,1);
\node[draw, circle,minimum size=32pt] (h) at (15,2.5) {5/0};
\path[draw,thick,-] (h) -- (14.5,1);
\path[draw,thick,-] (h) -- (15.5,1);
\node[draw, circle] (i) at (2,4.5) {22/0};
\path[draw,thick,-] (i) -- (a);
\path[draw,thick,-] (i) -- (b);
\node[draw, circle] (j) at (6,4.5) {23/0};
\path[draw,thick,-] (j) -- (c);
\path[draw,thick,-] (j) -- (d);
\node[draw, circle,fill=gray!50] (k) at (10,4.5) {20/2};
\path[draw,thick,-] (k) -- (e);
\path[draw,thick,-] (k) -- (f);
\node[draw, circle] (l) at (14,4.5) {17/0};
\path[draw,thick,-] (l) -- (g);
\path[draw,thick,-] (l) -- (h);
\node[draw, circle] (m) at (4,6.5) {45/0};
\path[draw,thick,-] (m) -- (i);
\path[draw,thick,-] (m) -- (j);
\node[draw, circle] (n) at (12,6.5) {45/0};
\path[draw,thick,-] (n) -- (k);
\path[draw,thick,-] (n) -- (l);
\node[draw, circle] (o) at (8,8.5) {90/0};
\path[draw,thick,-] (o) -- (m);
\path[draw,thick,-] (o) -- (n);
\path[draw=red,thick,->,line width=2pt] (o) -- (m);
\path[draw=red,thick,->,line width=2pt] (o) -- (n);
\path[draw=red,thick,->,line width=2pt] (m) -- (j);
\path[draw=red,thick,->,line width=2pt] (j) -- (c);
\path[draw=red,thick,->,line width=2pt] (j) -- (d);
\path[draw=red,thick,->,line width=2pt] (c) -- (5.5,1);
\path[draw=red,thick,->,line width=2pt] (n) -- (k);
\path[draw=red,thick,->,line width=2pt] (n) -- (l);
\path[draw=red,thick,->,line width=2pt] (l) -- (g);
\draw [decoration={brace}, decorate, line width=0.5mm] (14,-0.25) -- (5,-0.25);
\node at (5.5,-0.75) {$a$};
\node at (13.5,-0.75) {$b$};
\end{tikzpicture}
\end{center}
We also calculate the sum of elements in a range $[a,b]$
by walking in the tree from top to bottom.
If the range $[x,y]$ of a node completely belongs
to $[a,b]$, we add the $s$ value of the node to the sum.
Otherwise, we continue the search recursively
downwards in the tree.
Both in updates and queries,
the value of a lazy update is always propagated
to the children of the node
before processing the node.
The idea is that updates will be propagated
downwards only when it is necessary,
which guarantees that the operations are always efficient.
The following picture shows how the tree changes
when we calculate the value of $\texttt{sum}_a(a,b)$.
The rectangle shows the nodes whose values change,
because a lazy update is propagated downwards.
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (16,1);
\node[anchor=center] at (0.5, 0.5) {5};
\node[anchor=center] at (1.5, 0.5) {8};
\node[anchor=center] at (2.5, 0.5) {6};
\node[anchor=center] at (3.5, 0.5) {3};
\node[anchor=center] at (4.5, 0.5) {2};
\node[anchor=center] at (5.5, 0.5) {9};
\node[anchor=center] at (6.5, 0.5) {2};
\node[anchor=center] at (7.5, 0.5) {6};
\node[anchor=center] at (8.5, 0.5) {7};
\node[anchor=center] at (9.5, 0.5) {1};
\node[anchor=center] at (10.5, 0.5) {7};
\node[anchor=center] at (11.5, 0.5) {5};
\node[anchor=center] at (12.5, 0.5) {6};
\node[anchor=center] at (13.5, 0.5) {2};
\node[anchor=center] at (14.5, 0.5) {3};
\node[anchor=center] at (15.5, 0.5) {2};
\node[draw, circle] (a) at (1,2.5) {13/0};
\path[draw,thick,-] (a) -- (0.5,1);
\path[draw,thick,-] (a) -- (1.5,1);
\node[draw, circle,minimum size=32pt] (b) at (3,2.5) {9/0};
\path[draw,thick,-] (b) -- (2.5,1);
\path[draw,thick,-] (b) -- (3.5,1);
\node[draw, circle,minimum size=32pt] (c) at (5,2.5) {11/0};
\path[draw,thick,-] (c) -- (4.5,1);
\path[draw,thick,-] (c) -- (5.5,1);
\node[draw, circle,minimum size=32pt] (d) at (7,2.5) {8/2};
\path[draw,thick,-] (d) -- (6.5,1);
\path[draw,thick,-] (d) -- (7.5,1);
\node[draw, circle,minimum size=32pt] (e) at (9,2.5) {8/2};
\path[draw,thick,-] (e) -- (8.5,1);
\path[draw,thick,-] (e) -- (9.5,1);
\node[draw, circle,fill=gray!50,] (f) at (11,2.5) {12/2};
\path[draw,thick,-] (f) -- (10.5,1);
\path[draw,thick,-] (f) -- (11.5,1);
\node[draw, circle,fill=gray!50,minimum size=32pt] (g) at (13,2.5) {8/2};
\path[draw,thick,-] (g) -- (12.5,1);
\path[draw,thick,-] (g) -- (13.5,1);
\node[draw, circle,minimum size=32pt] (h) at (15,2.5) {5/0};
\path[draw,thick,-] (h) -- (14.5,1);
\path[draw,thick,-] (h) -- (15.5,1);
\node[draw, circle] (i) at (2,4.5) {22/0};
\path[draw,thick,-] (i) -- (a);
\path[draw,thick,-] (i) -- (b);
\node[draw, circle] (j) at (6,4.5) {23/0};
\path[draw,thick,-] (j) -- (c);
\path[draw,thick,-] (j) -- (d);
\node[draw, circle] (k) at (10,4.5) {28/0};
\path[draw,thick,-] (k) -- (e);
\path[draw,thick,-] (k) -- (f);
\node[draw, circle] (l) at (14,4.5) {17/0};
\path[draw,thick,-] (l) -- (g);
\path[draw,thick,-] (l) -- (h);
\node[draw, circle] (m) at (4,6.5) {45/0};
\path[draw,thick,-] (m) -- (i);
\path[draw,thick,-] (m) -- (j);
\node[draw, circle] (n) at (12,6.5) {45/0};
\path[draw,thick,-] (n) -- (k);
\path[draw,thick,-] (n) -- (l);
\node[draw, circle] (o) at (8,8.5) {90/0};
\path[draw,thick,-] (o) -- (m);
\path[draw,thick,-] (o) -- (n);
\path[draw=red,thick,->,line width=2pt] (o) -- (n);
\path[draw=red,thick,->,line width=2pt] (n) -- (k);
\path[draw=red,thick,->,line width=2pt] (n) -- (l);
\path[draw=red,thick,->,line width=2pt] (k) -- (f);
\path[draw=red,thick,->,line width=2pt] (l) -- (g);
\draw [decoration={brace}, decorate, line width=0.5mm] (14,-0.25) -- (10,-0.25);
\draw[color=blue,thick] (8,1.5) rectangle (12,5.5);
\node at (10.5,-0.75) {$a$};
\node at (13.5,-0.75) {$b$};
\end{tikzpicture}
\end{center}
Note that sometimes it is needed to combine lazy updates.
This happens when a node that already has a lazy update
is assigned another lazy update.
When calculating sums, it is easy to combine lazy updates,
because the combination of updates $z_1$ and $z_2$
corresponds to an update $z_1+z_2$.
\subsubsection{Polynomial updates}
Lazy updates can be generalized so that it is
possible to update ranges using polynomials of the form
\[p(u) = t_k u^k + t_{k-1} u^{k-1} + \cdots + t_0.\]
In this case, the update for a value
at position $i$ in $[a,b]$ is $p(i-a)$.
For example, adding the polynomial $p(u)=u+1$
to $[a,b]$ means that the value at position $a$
increases by 1, the value at position $a+1$
increases by 2, and so on.
To support polynomial updates,
each node is assigned $k+2$ values,
where $k$ equals the degree of the polynomial.
The value $s$ is the sum of the elements in the range,
and the values $z_0,z_1,\ldots,z_k$ are the coefficients
of a polynomial that corresponds to a lazy update.
Now, the sum of values in a range $[x,y]$ equals
\[s+\sum_{u=0}^{y-x} z_k u^k + z_{k-1} u^{k-1} + \cdots + z_0.\]
The value of such a sum
can be efficiently calculated using sum formulas.
For example, the term $z_0$ corresponds to the sum
$(y-x+1)z_0$, and the term $z_1 u$ corresponds to the sum
\[z_1(0+1+\cdots+y-x) = z_1 \frac{(y-x)(y-x+1)}{2} .\]
When propagating an update in the tree,
the indices of $p(u)$ change,
because in each range $[x,y]$,
the values are
calculated for $u=0,1,\ldots,y-x$.
However, this is not a problem, because
$p'(u)=p(u+h)$ is a polynomial
of equal degree as $p(u)$.
For example, if $p(u)=t_2 u^2+t_1 u-t_0$, then
\[p'(u)=t_2(u+h)^2+t_1(u+h)-t_0=t_2 u^2 + (2ht_2+t_1)u+t_2h^2+t_1h-t_0.\]
\section{Dynamic trees}
\index{dynamic segment tree}
An ordinary segment tree is static,
which means that each node has a fixed position
in the array and the tree requires
a fixed amount of memory.
In a \key{dynamic segment tree},
memory is allocated only for nodes that
are actually accessed during the algorithm,
which can save a large amount of memory.
The nodes of a dynamic tree can be represented as structs:
\begin{lstlisting}
struct node {
int value;
int x, y;
node *left, *right;
node(int v, int x, int y) : value(v), x(x), y(y) {}
};
\end{lstlisting}
Here \texttt{value} is the value of the node,
$[\texttt{x},\texttt{y}]$ is the corresponding range,
and \texttt{left} and \texttt{right} point to the left
and right subtree.
After this, nodes can be created as follows:
\begin{lstlisting}
// create new node
node *x = new node(0, 0, 15);
// change value
x->value = 5;
\end{lstlisting}
\subsubsection{Sparse segment trees}
\index{sparse segment tree}
A dynamic segment tree is useful when
the underlying array is \emph{sparse},
i.e., the range $[0,n-1]$
of allowed indices is large,
but most array values are zeros.
While an ordinary segment tree uses $O(n)$ memory,
a dynamic segment tree only uses $O(k \log n)$ memory,
where $k$ is the number of operations performed.
A \key{sparse segment tree} initially has
only one node $[0,n-1]$ whose value is zero,
which means that every array value is zero.
After updates, new nodes are dynamically added
to the tree.
For example, if $n=16$ and the elements
in positions 3 and 10 have been modified,
the tree contains the following nodes:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\scriptsize
\node[draw, circle,minimum size=35pt] (1) at (0,0) {$[0,15]$};
\node[draw, circle,minimum size=35pt] (2) at (-4,-2) {$[0,7]$};
\node[draw, circle,minimum size=35pt] (3) at (-6,-4) {$[0,3]$};
\node[draw, circle,minimum size=35pt] (4) at (-4,-6) {$[2,3]$};
\node[draw, circle,minimum size=35pt] (5) at (-2,-8) {$[3]$};
\node[draw, circle,minimum size=35pt] (6) at (4,-2) {$[8,15]$};
\node[draw, circle,minimum size=35pt] (7) at (2,-4) {$[8,11]$};
\node[draw, circle,minimum size=35pt] (8) at (4,-6) {$[10,11]$};
\node[draw, circle,minimum size=35pt] (9) at (2,-8) {$[10]$};
\path[draw,thick,->] (1) -- (2);
\path[draw,thick,->] (2) -- (3);
\path[draw,thick,->] (3) -- (4);
\path[draw,thick,->] (4) -- (5);
\path[draw,thick,->] (1) -- (6);
\path[draw,thick,->] (6) -- (7);
\path[draw,thick,->] (7) -- (8);
\path[draw,thick,->] (8) -- (9);
\end{tikzpicture}
\end{center}
Any path from the root node to a leaf contains
$O(\log n)$ nodes,
so each operation adds at most $O(\log n)$
new nodes to the tree.
Thus, after $k$ operations, the tree contains
at most $O(k \log n)$ nodes.
Note that if we know all elements to be updated
at the beginning of the algorithm,
a dynamic segment tree is not necessary,
because we can use an ordinary segment tree with
index compression (Chapter 9.4).
However, this is not possible when the indices
are generated during the algorithm.
\subsubsection{Persistent segment trees}
\index{persistent segment tree}
Using a dynamic implementation,
it is also possible to create a
\key{persistent segment tree} that stores
the \emph{modification history} of the tree.
In such an implementation, we can
efficiently access
all versions of the tree that have
existed during the algorithm.
When the modification history is available,
we can perform queries in any previous tree
like in an ordinary segment tree, because the
full structure of each tree is stored.
We can also create new trees based on previous
trees and modify them independently.
Consider the following sequence of updates,
where red nodes change
and other nodes remain the same:
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[draw, circle,minimum size=13pt] (1a) at (3,0) {};
\node[draw, circle,minimum size=13pt] (2a) at (2,-1) {};
\node[draw, circle,minimum size=13pt] (3a) at (4,-1) {};
\node[draw, circle,minimum size=13pt] (4a) at (1.5,-2) {};
\node[draw, circle,minimum size=13pt] (5a) at (2.5,-2) {};
\node[draw, circle,minimum size=13pt] (6a) at (3.5,-2) {};
\node[draw, circle,minimum size=13pt] (7a) at (4.5,-2) {};
\path[draw,thick,->] (1a) -- (2a);
\path[draw,thick,->] (1a) -- (3a);
\path[draw,thick,->] (2a) -- (4a);
\path[draw,thick,->] (2a) -- (5a);
\path[draw,thick,->] (3a) -- (6a);
\path[draw,thick,->] (3a) -- (7a);
\node[draw, circle,minimum size=13pt,fill=red] (1b) at (3+5,0) {};
\node[draw, circle,minimum size=13pt,fill=red] (2b) at (2+5,-1) {};
\node[draw, circle,minimum size=13pt] (3b) at (4+5,-1) {};
\node[draw, circle,minimum size=13pt] (4b) at (1.5+5,-2) {};
\node[draw, circle,minimum size=13pt,fill=red] (5b) at (2.5+5,-2) {};
\node[draw, circle,minimum size=13pt] (6b) at (3.5+5,-2) {};
\node[draw, circle,minimum size=13pt] (7b) at (4.5+5,-2) {};
\path[draw,thick,->] (1b) -- (2b);
\path[draw,thick,->] (1b) -- (3b);
\path[draw,thick,->] (2b) -- (4b);
\path[draw,thick,->] (2b) -- (5b);
\path[draw,thick,->] (3b) -- (6b);
\path[draw,thick,->] (3b) -- (7b);
\node[draw, circle,minimum size=13pt,fill=red] (1c) at (3+10,0) {};
\node[draw, circle,minimum size=13pt] (2c) at (2+10,-1) {};
\node[draw, circle,minimum size=13pt,fill=red] (3c) at (4+10,-1) {};
\node[draw, circle,minimum size=13pt] (4c) at (1.5+10,-2) {};
\node[draw, circle,minimum size=13pt] (5c) at (2.5+10,-2) {};
\node[draw, circle,minimum size=13pt] (6c) at (3.5+10,-2) {};
\node[draw, circle,minimum size=13pt,fill=red] (7c) at (4.5+10,-2) {};
\path[draw,thick,->] (1c) -- (2c);
\path[draw,thick,->] (1c) -- (3c);
\path[draw,thick,->] (2c) -- (4c);
\path[draw,thick,->] (2c) -- (5c);
\path[draw,thick,->] (3c) -- (6c);
\path[draw,thick,->] (3c) -- (7c);
\node at (3,-3) {step 1};
\node at (3+5,-3) {step 2};
\node at (3+10,-3) {step 3};
\end{tikzpicture}
\end{center}
After each update, most nodes of the tree
remain the same,
so an efficient way to store the modification history
is to represent each tree in the history as a combination
of new nodes and subtrees of previous trees.
In this example, the modification history can be
stored as follows:
\begin{center}
\begin{tikzpicture}[scale=0.8]
\path[use as bounding box] (0, 1) rectangle (16, -3.5);
\node[draw, circle,minimum size=13pt] (1a) at (3,0) {};
\node[draw, circle,minimum size=13pt] (2a) at (2,-1) {};
\node[draw, circle,minimum size=13pt] (3a) at (4,-1) {};
\node[draw, circle,minimum size=13pt] (4a) at (1.5,-2) {};
\node[draw, circle,minimum size=13pt] (5a) at (2.5,-2) {};
\node[draw, circle,minimum size=13pt] (6a) at (3.5,-2) {};
\node[draw, circle,minimum size=13pt] (7a) at (4.5,-2) {};
\path[draw,thick,->] (1a) -- (2a);
\path[draw,thick,->] (1a) -- (3a);
\path[draw,thick,->] (2a) -- (4a);
\path[draw,thick,->] (2a) -- (5a);
\path[draw,thick,->] (3a) -- (6a);
\path[draw,thick,->] (3a) -- (7a);
\node[draw, circle,minimum size=13pt,fill=red] (1b) at (3+5,0) {};
\node[draw, circle,minimum size=13pt,fill=red] (2b) at (2+5,-1) {};
\node[draw, circle,minimum size=13pt,fill=red] (5b) at (2.5+5,-2) {};
\path[draw,thick,->] (1b) -- (2b);
\draw[thick,->] (1b) .. controls (3+5+2,0-1) and (3+5,2.5) .. (3a);
\draw[thick,->] (2b) .. controls (2+5-0.5,-1-0.5) and (2,4.5) .. (4a);
\path[draw,thick,->] (2b) -- (5b);
\node[draw, circle,minimum size=13pt,fill=red] (1c) at (3+10,0) {};
\node[draw, circle,minimum size=13pt,fill=red] (3c) at (4+10,-1) {};
\node[draw, circle,minimum size=13pt,fill=red] (7c) at (4.5+10,-2) {};
\path[draw,thick,->] (1c) -- (2b);
\path[draw,thick,->] (1c) -- (3c);
\draw[thick,->] (3c) .. controls (2.5+5,-3) and (3.5,-3) .. (6a);
\path[draw,thick,->] (3c) -- (7c);
\node at (3,-3) {step 1};
\node at (3+5,-3) {step 2};
\node at (3+10,-3) {step 3};
\end{tikzpicture}
\end{center}
The structure of each previous tree can be
reconstructed by following the pointers
starting at the corresponding root node.
Since each operation
adds only $O(\log n)$ new nodes to the tree,
it is possible to store the full modification history of the tree.
\section{Data structures}
Instead of single values, nodes in a segment tree
can also contain \emph{data structures} that maintain information
about the corresponding ranges.
In such a tree, the operations take
$O(f(n) \log n)$ time, where $f(n)$ is
the time needed for processing a single node during an operation.
As an example, consider a segment tree that
supports queries of the form
''how many times does an element $x$ appear
in the range $[a,b]$?''
For example, the element 1 appears three times
in the following range:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\fill[lightgray] (1,0) rectangle (6,1);
\draw (0,0) grid (8,1);
\node[anchor=center] at (0.5, 0.5) {3};
\node[anchor=center] at (1.5, 0.5) {1};
\node[anchor=center] at (2.5, 0.5) {2};
\node[anchor=center] at (3.5, 0.5) {3};
\node[anchor=center] at (4.5, 0.5) {1};
\node[anchor=center] at (5.5, 0.5) {1};
\node[anchor=center] at (6.5, 0.5) {1};
\node[anchor=center] at (7.5, 0.5) {2};
\end{tikzpicture}
\end{center}
To support such queries, we build a segment tree
where each node is assigned a data structure
that can be asked how many times any element $x$
appears in the corresponding range.
Using this tree,
the answer to a query can be calculated
by combining the results from the nodes
that belong to the range.
For example, the following segment tree
corresponds to the above array:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\node[draw, rectangle] (a) at (1,2.5)
{
\footnotesize
\begin{tabular}{r}
3 \\
\hline
1 \\
\end{tabular}};
\node[draw, rectangle] (b) at (3,2.5)
{
\footnotesize
\begin{tabular}{r}
1 \\
\hline
1 \\
\end{tabular}};
\node[draw, rectangle] (c) at (5,2.5)
{
\footnotesize
\begin{tabular}{r}
2 \\
\hline
1 \\
\end{tabular}};
\node[draw, rectangle] (d) at (7,2.5)
{
\footnotesize
\begin{tabular}{r}
3 \\
\hline
1 \\
\end{tabular}};
\node[draw, rectangle] (e) at (9,2.5)
{
\footnotesize
\begin{tabular}{r}
1 \\
\hline
1 \\
\end{tabular}};
\node[draw, rectangle] (f) at (11,2.5)
{
\footnotesize
\begin{tabular}{r}
1 \\
\hline
1 \\
\end{tabular}};
\node[draw, rectangle] (g) at (13,2.5)
{
\footnotesize
\begin{tabular}{r}
1 \\
\hline
1 \\
\end{tabular}};
\node[draw, rectangle] (h) at (15,2.5)
{
\footnotesize
\begin{tabular}{r}
2 \\
\hline
1 \\
\end{tabular}};
\node[draw, rectangle] (i) at (2,4.5)
{
\footnotesize
\begin{tabular}{rr}
1 & 3 \\
\hline
1 & 1 \\
\end{tabular}};
\path[draw,thick,-] (i) -- (a);
\path[draw,thick,-] (i) -- (b);
\node[draw, rectangle] (j) at (6,4.5)
{
\footnotesize
\begin{tabular}{rr}
2 & 3 \\
\hline
1 & 1 \\
\end{tabular}};
\path[draw,thick,-] (j) -- (c);
\path[draw,thick,-] (j) -- (d);
\node[draw, rectangle] (k) at (10,4.5)
{
\footnotesize
\begin{tabular}{r}
1 \\
\hline
2 \\
\end{tabular}};
\path[draw,thick,-] (k) -- (e);
\path[draw,thick,-] (k) -- (f);
\node[draw, rectangle] (l) at (14,4.5)
{
\footnotesize
\begin{tabular}{rr}
1 & 2 \\
\hline
1 & 1 \\
\end{tabular}};
\path[draw,thick,-] (l) -- (g);
\path[draw,thick,-] (l) -- (h);
\node[draw, rectangle] (m) at (4,6.5)
{
\footnotesize
\begin{tabular}{rrr}
1 & 2 & 3 \\
\hline
1 & 1 & 2 \\
\end{tabular}};
\path[draw,thick,-] (m) -- (i);
\path[draw,thick,-] (m) -- (j);
\node[draw, rectangle] (n) at (12,6.5)
{
\footnotesize
\begin{tabular}{rr}
1 & 2 \\
\hline
3 & 1 \\
\end{tabular}};
\path[draw,thick,-] (n) -- (k);
\path[draw,thick,-] (n) -- (l);
\node[draw, rectangle] (o) at (8,8.5)
{
\footnotesize
\begin{tabular}{rrr}
1 & 2 & 3 \\
\hline
4 & 2 & 2 \\
\end{tabular}};
\path[draw,thick,-] (o) -- (m);
\path[draw,thick,-] (o) -- (n);
\end{tikzpicture}
\end{center}
We can build the tree so
that each node contains a \texttt{map} structure.
In this case, the time needed for processing each
node is $O(\log n)$, so the total time complexity
of a query is $O(\log^2 n)$.
The tree uses $O(n \log n)$ memory,
because there are $O(\log n)$ levels
and each level contains
$O(n)$ elements.
\section{Two-dimensionality}
\index{two-dimensional segment tree}
A \key{two-dimensional segment tree} supports
queries related to rectangular subarrays
of a two-dimensional array.
Such a tree can be implemented as
nested segment trees: a big tree corresponds to the
rows of the array, and each node contains a small tree
that corresponds to a column.
For example, in the array
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (4,4);
\node[anchor=center] at (0.5, 0.5) {8};
\node[anchor=center] at (1.5, 0.5) {5};
\node[anchor=center] at (2.5, 0.5) {3};
\node[anchor=center] at (3.5, 0.5) {8};
\node[anchor=center] at (0.5, 1.5) {3};
\node[anchor=center] at (1.5, 1.5) {9};
\node[anchor=center] at (2.5, 1.5) {7};
\node[anchor=center] at (3.5, 1.5) {1};
\node[anchor=center] at (0.5, 2.5) {8};
\node[anchor=center] at (1.5, 2.5) {7};
\node[anchor=center] at (2.5, 2.5) {5};