-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathllm.py
199 lines (160 loc) · 5.62 KB
/
llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from typing import (
Any,
AsyncIterator,
Dict,
Iterator,
List,
Optional,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms.base import LLM
from langchain.pydantic_v1 import Field, root_validator
from langchain.schema.output import GenerationChunk
from langchain.utils import get_from_dict_or_env
# logger = logging.getLogger(__name__)
class ZhipuAILLM(LLM):
"""Zhipuai hosted open source or customized models.
To use, you should have the ``zhipuai`` python package installed, and
the environment variable ``zhipuai_api_key`` set with
your API key and Secret Key.
zhipuai_api_key are required parameters which you could get from
https://open.bigmodel.cn/usercenter/apikeys
Example:
.. code-block:: python
from langchain.llms import ZhipuAILLM
zhipuai_model = ZhipuAILLM(model="chatglm_std", temperature=temperature)
"""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
client: Any
model: str = "chatglm_turbo"
zhipuai_api_key: Optional[str] = None
incremental: Optional[bool] = True
"""Whether to incremental the results or not."""
streaming: Optional[bool] = False
"""Whether to streaming the results or not."""
# streaming = -incremental
request_timeout: Optional[int] = 60
"""request timeout for chat http requests"""
top_p: Optional[float] = 0.8
temperature: Optional[float] = 0.95
request_id: Optional[float] = None
@root_validator()
def validate_enviroment(cls, values: Dict) -> Dict:
values["zhipuai_api_key"] = get_from_dict_or_env(
values,
"zhipuai_api_key",
"ZHIPUAI_API_KEY",
)
params = {
"api_key": values["zhipuai_api_key"],
"model": values["model"],
}
try:
import zhipuai
values["client"] = zhipuai.model_api
except ImportError:
raise ValueError(
"zhipuai package not found, please install it with "
"`pip install zhipuai`"
)
return values
@property
def _identifying_params(self) -> Dict[str, Any]:
return {
**{"model": self.model},
**super()._identifying_params,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "zhipuai"
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
normal_params = {
"streaming" :self.streaming,
"top_p": self.top_p,
"temperature": self.temperature,
"request_id": self.request_id,
}
return {**normal_params, **self.model_kwargs}
def _convert_prompt_msg_params(
self,
prompt: str,
**kwargs: Any,
) -> dict:
return {
**{"prompt": prompt, "model": self.model},
**self._default_params,
**kwargs,
}
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to an zhipuai models endpoint for each generation with a prompt.
Args:
prompt: The prompt to pass into the model.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = zhipuai_model("Tell me a joke.")
"""
if self.streaming:
completion = ""
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
completion += chunk.text
return completion
params = self._convert_prompt_msg_params(prompt, **kwargs)
response_payload = self.client.invoke(**params)
return response_payload["data"]["choices"][-1]["content"]
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
if self.streaming:
completion = ""
async for chunk in self._astream(prompt, stop, run_manager, **kwargs):
completion += chunk.text
return completion
params = self._convert_prompt_msg_params(prompt, **kwargs)
response_payload = await self.client.async_invoke(**params)
return response_payload
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
params = self._convert_prompt_msg_params(prompt, **kwargs)
for res in self.client.invoke(**params):
if res:
chunk = GenerationChunk(text=res)
yield chunk
if run_manager:
run_manager.on_llm_new_token(chunk.text)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
params = self._convert_prompt_msg_params(prompt, **kwargs)
async for res in await self.client.ado(**params):
if res:
chunk = GenerationChunk(text=res["data"]["choices"]["content"])
yield chunk
if run_manager:
await run_manager.on_llm_new_token(chunk.text)